
Let x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$, then the value of a can be equal to:
(a) $\dfrac{2}{3}$
(b) $\dfrac{-2}{3}$
(c) $\dfrac{3}{2}$
(d) $\dfrac{-3}{2}$
Answer
536.7k+ views
Hint: We start solving the problem by adding the given two trigonometric equations and then using the trigonometric identity ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. We then make the necessary arrangements to get a quadratic equation in ‘a’. We then factorize the obtained quadratic equation and then equate the factors to zero to find the possible values of ‘a’.
Complete step by step answer:
According to the problem, we are given that x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$. We need to find the value of a.
Let us add the given equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$.
So, we have $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)+\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}$.
\[\Rightarrow \left( {{\tan }^{2}}x-{{\sec }^{2}}x \right)+\left( {{\tan }^{2}}y-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -\left( {{\sec }^{2}}x-{{\tan }^{2}}x \right)-\left( {{\sec }^{2}}y-{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\] ---(1)
From the trigonometric identities we have ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. Let us substitute this identity in equation (1).
\[\Rightarrow -1-1=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -2=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow {{a}^{2}}+\dfrac{5a}{6}-1=0\].
\[\Rightarrow \dfrac{6{{a}^{2}}+5a-6}{6}=0\].
\[\Rightarrow 6{{a}^{2}}+5a-6=0\].
Now, let us factorize this quadratic equation to find the value(s) of ‘a’.
\[\Rightarrow 6{{a}^{2}}+9a-4a-6=0\].
\[\Rightarrow \left( 3a-2 \right)\left( 2a+3 \right)=0\].
\[\Rightarrow 3a-2=0\] or \[2a+3=0\].
\[\Rightarrow 3a=2\] or $2a=-3$.
\[\Rightarrow a=\dfrac{2}{3}\] or $a=\dfrac{-3}{2}$.
So, the possible values of ‘a’ are $\dfrac{2}{3}$ or $\dfrac{-3}{2}$.
So, the correct answer is “Option a and d”.
Note: Whenever we get this type of problems, we try to make use of the trigonometric identities which reduces our calculation time and avoids confusion. We can also find the roots of the quadratic equation \[6{{a}^{2}}+5a-6=0\] by using the fact that the roots of the quadratic equation $p{{x}^{2}}+qx+r=0$ is $\dfrac{-q\pm \sqrt{{{q}^{2}}-4pr}}{2p}$. We should not confuse signs with trigonometric identities while solving this type of problem.
Complete step by step answer:
According to the problem, we are given that x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$. We need to find the value of a.
Let us add the given equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$.
So, we have $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)+\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}$.
\[\Rightarrow \left( {{\tan }^{2}}x-{{\sec }^{2}}x \right)+\left( {{\tan }^{2}}y-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -\left( {{\sec }^{2}}x-{{\tan }^{2}}x \right)-\left( {{\sec }^{2}}y-{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\] ---(1)
From the trigonometric identities we have ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. Let us substitute this identity in equation (1).
\[\Rightarrow -1-1=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -2=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow {{a}^{2}}+\dfrac{5a}{6}-1=0\].
\[\Rightarrow \dfrac{6{{a}^{2}}+5a-6}{6}=0\].
\[\Rightarrow 6{{a}^{2}}+5a-6=0\].
Now, let us factorize this quadratic equation to find the value(s) of ‘a’.
\[\Rightarrow 6{{a}^{2}}+9a-4a-6=0\].
\[\Rightarrow \left( 3a-2 \right)\left( 2a+3 \right)=0\].
\[\Rightarrow 3a-2=0\] or \[2a+3=0\].
\[\Rightarrow 3a=2\] or $2a=-3$.
\[\Rightarrow a=\dfrac{2}{3}\] or $a=\dfrac{-3}{2}$.
So, the possible values of ‘a’ are $\dfrac{2}{3}$ or $\dfrac{-3}{2}$.
So, the correct answer is “Option a and d”.
Note: Whenever we get this type of problems, we try to make use of the trigonometric identities which reduces our calculation time and avoids confusion. We can also find the roots of the quadratic equation \[6{{a}^{2}}+5a-6=0\] by using the fact that the roots of the quadratic equation $p{{x}^{2}}+qx+r=0$ is $\dfrac{-q\pm \sqrt{{{q}^{2}}-4pr}}{2p}$. We should not confuse signs with trigonometric identities while solving this type of problem.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The term brown air is used for A Acid fumes B Photochemical class 11 chemistry CBSE

Which of the following is not the state of the matter class 11 chemistry CBSE

Which of the following is not the state of matter ASolid class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

