
In a streamline (laminar flow) the velocity of flow at any point in the liquid:
A) Does not vary with time
B) May vary in direction but not in magnitude
C) May vary in magnitude but not in the direction
D) May vary both in magnitude and direction
Answer
486.3k+ views
Hint: In streamline flow fluids flow in parallel layers such that there is no disruption or intermixing of the layer at a given point so by definition, In streamline flow, the velocity of flow at any chosen point in the liquid is always the same i.e. doesn’t vary with time either in magnitude or in direction.
Complete step by step answer:
The velocity of a liquid at a point remains constant in time. above a certain critical speed, the fluid flow becomes unsteady this irregular flow is called critical velocity or turbulent flow
Continuity equation for ideal liquids,
Let \[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\] \[{a_1}{a_2}{a_3}\] be the area of cross section area of the tube and \[{v_1}{v_2}{v_3}\] be the velocities respectively then,
\[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\]
Here, it is clear that the velocity of flow of liquid is inversely proportional to the area of cross section. Velocity is small at those points where the area of the cross section is large and vice-versa.
Therefore we can say in laminar flow velocity does not change with time. So, option (A) is correct.
Note:
The velocity of a fluid at a point remains constant but above critical speed or turbulent flow the fluids become unsteady In Bernoulli’s principle equation of continuity is used.
Bernoulli principle - If a small amount of non-viscous, incompressible liquid flows from one point to another its total energy remains constant throughout the displacement.
Complete step by step answer:
The velocity of a liquid at a point remains constant in time. above a certain critical speed, the fluid flow becomes unsteady this irregular flow is called critical velocity or turbulent flow
Continuity equation for ideal liquids,
Let \[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\] \[{a_1}{a_2}{a_3}\] be the area of cross section area of the tube and \[{v_1}{v_2}{v_3}\] be the velocities respectively then,
\[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\]
Here, it is clear that the velocity of flow of liquid is inversely proportional to the area of cross section. Velocity is small at those points where the area of the cross section is large and vice-versa.
Therefore we can say in laminar flow velocity does not change with time. So, option (A) is correct.
Note:
The velocity of a fluid at a point remains constant but above critical speed or turbulent flow the fluids become unsteady In Bernoulli’s principle equation of continuity is used.
Bernoulli principle - If a small amount of non-viscous, incompressible liquid flows from one point to another its total energy remains constant throughout the displacement.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
