Answer
Verified
461.1k+ views
Hint: In streamline flow fluids flow in parallel layers such that there is no disruption or intermixing of the layer at a given point so by definition, In streamline flow, the velocity of flow at any chosen point in the liquid is always the same i.e. doesn’t vary with time either in magnitude or in direction.
Complete step by step answer:
The velocity of a liquid at a point remains constant in time. above a certain critical speed, the fluid flow becomes unsteady this irregular flow is called critical velocity or turbulent flow
Continuity equation for ideal liquids,
Let \[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\] \[{a_1}{a_2}{a_3}\] be the area of cross section area of the tube and \[{v_1}{v_2}{v_3}\] be the velocities respectively then,
\[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\]
Here, it is clear that the velocity of flow of liquid is inversely proportional to the area of cross section. Velocity is small at those points where the area of the cross section is large and vice-versa.
Therefore we can say in laminar flow velocity does not change with time. So, option (A) is correct.
Note:
The velocity of a fluid at a point remains constant but above critical speed or turbulent flow the fluids become unsteady In Bernoulli’s principle equation of continuity is used.
Bernoulli principle - If a small amount of non-viscous, incompressible liquid flows from one point to another its total energy remains constant throughout the displacement.
Complete step by step answer:
The velocity of a liquid at a point remains constant in time. above a certain critical speed, the fluid flow becomes unsteady this irregular flow is called critical velocity or turbulent flow
Continuity equation for ideal liquids,
Let \[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\] \[{a_1}{a_2}{a_3}\] be the area of cross section area of the tube and \[{v_1}{v_2}{v_3}\] be the velocities respectively then,
\[{a_1}{v_1} = {a_2}{v_2} = {a_3}{v_3}\]
Here, it is clear that the velocity of flow of liquid is inversely proportional to the area of cross section. Velocity is small at those points where the area of the cross section is large and vice-versa.
Therefore we can say in laminar flow velocity does not change with time. So, option (A) is correct.
Note:
The velocity of a fluid at a point remains constant but above critical speed or turbulent flow the fluids become unsteady In Bernoulli’s principle equation of continuity is used.
Bernoulli principle - If a small amount of non-viscous, incompressible liquid flows from one point to another its total energy remains constant throughout the displacement.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light