Answer
Verified
401.1k+ views
Hint:In order to this question, to know the velocity of sound in the air, we should apply the formula of resonance with both the given lengths of air columns separately. Now, we can calculate the velocity of sound in air.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Complete step by step answer:
Let the lengths of the air columns are $16\,cm\,and\,49\,cm$ be ${l_1}\,and\,{l_2}$ respectively. And also the end correction of the resonance be $e$. So,
${l_1} + e = \dfrac{v}{{4f}}$ ….eq(i)
Here, $v$ is the velocity of sound in the air and $f$ is the frequency.
Again,
${l_2} + e = \dfrac{{3v}}{{4f}}$ ….eq(ii)
So, by subtracting eq(i) from eq(ii)-
${l_2} - {l_1} = \dfrac{{3v}}{{4f}} - \dfrac{v}{{4f}} \\
\Rightarrow {l_2} - {l_1} = \dfrac{{2v}}{{4f}} \\
\Rightarrow {l_2} - {l_1}= \dfrac{v}{{2f}} \\
\Rightarrow v = 2f({l_2} - {l_1}) \\ $
So, $f$ is given in the question itself i.e.. $500\,Hz$ .
$\Rightarrow v = 2 \times 500(49 - 16) \\
\Rightarrow v = 1000(33) \\
\therefore v = 33000\,cm{s^{ - 1}}\,or\,330\,m{s^{ - 1}} $
Therefore, the velocity of the sound in air is $330\,m{s^{ - 1}}$.
Hence, the correct option is C.
Note:The length $l$ of a pipe or tube (air column) determines its resonance frequencies. Given the requirement of a node at the closed end and an antinode at the open end, only a limited number of wavelengths can be accommodated in the tube.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light