
If energy (E), force (F) and linear momentum (P) are fundamental quantities, then match the following and give the correct answer.
A B Physical quantity Dimensional formula a) Mass d) \[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}\] b) Length e) \[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}\] c) Time f) \[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}\]
A. a-d, b-e, c-f
B. a-f, b-e, c-d
C. a-e, b-f, c-d,
D. a-e, b-d, c-f
A | B |
Physical quantity | Dimensional formula |
a) Mass | d) \[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}\] |
b) Length | e) \[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}\] |
c) Time | f) \[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}\] |
Answer
501.3k+ views
Hint: The dimensional formulae are derived using the parameters mass, length and time. In this problem, we will derive the dimensional formula of the mass, length and the time using the dimensional formula of the energy, force and the linear momentum. So, we will be performing the reverse operation.
Complete step by step answer:
From given, we have the data,
The energy (E), force (F) and linear momentum (P) are fundamental quantities.
The dimensional formula of the energy is, \[\text{E}=[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]\]
The dimensional formula of the force is, \[\text{F}=[\text{ML}{{\text{T}}^{-2}}]\]
The dimensional formula of the linear momentum is, \[\text{p}=[\text{ML}{{\text{T}}^{-1}}]\]
Consider the given options one by one and substitute the dimensional formulae of the energy, force and linear momentum.
The first option given is, \[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}\],
The energy is raised to 0, force is raised to -1 and linear momentum is raised to 1.
So, we have,
\[\begin{align}
& [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{1}} \\
& \Rightarrow [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}][\text{ML}{{\text{T}}^{-1}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{0}}{{\text{L}}^{0}}{{\text{T}}^{1}}]\]
So, the dimensional formula of the first option represents the dimensional formula of time.
Similarly, compute the other two given options.
The second option given is, \[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}\],
The energy is raised to -1, force is raised to 0 and linear momentum is raised to 2.
So, we have,
\[\begin{align}
[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-1}}]}^{2}} \\
&\Rightarrow [{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{=1}}{{\text{L}}^{-2}}{{\text{T}}^{2}}][{{\text{M}}^{2}}{{\text{L}}^{2}}{{\text{T}}^{-2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{1}}{{\text{L}}^{0}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of mass.
Now compute the third option.
The third option given is, \[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}\],
The energy is raised to 1, force is raised to -1 and linear momentum is raised to 0.
So, we have,
\[\begin{align}
& [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{0}} \\
& \Rightarrow [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{1}}{{\text{L}}^{2}}{{\text{T}}^{-2}}][{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{0}}{{\text{L}}^{1}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of length.
Therefore, the dimensional formula of the mass is, \[[\text{M}]=[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the length is,\[[\text{L}]=[\text{E}{}^{-1}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the time is, \[[\text{T}]=[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]\]
If energy (E), force (F) and linear momentum (P) are fundamental quantities, then the correct match is a-e, b-f, c-d, thus, the option (C) is correct.
Note:
The things to be on your finger-tips for further information on solving these types of problems are: The units of the given parameters should be taken into consideration while solving the problem. The units are the source for computing the dimensional formulae.
Complete step by step answer:
From given, we have the data,
The energy (E), force (F) and linear momentum (P) are fundamental quantities.
The dimensional formula of the energy is, \[\text{E}=[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]\]
The dimensional formula of the force is, \[\text{F}=[\text{ML}{{\text{T}}^{-2}}]\]
The dimensional formula of the linear momentum is, \[\text{p}=[\text{ML}{{\text{T}}^{-1}}]\]
Consider the given options one by one and substitute the dimensional formulae of the energy, force and linear momentum.
The first option given is, \[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}\],
The energy is raised to 0, force is raised to -1 and linear momentum is raised to 1.
So, we have,
\[\begin{align}
& [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{1}} \\
& \Rightarrow [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}][\text{ML}{{\text{T}}^{-1}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{0}}{{\text{L}}^{0}}{{\text{T}}^{1}}]\]
So, the dimensional formula of the first option represents the dimensional formula of time.
Similarly, compute the other two given options.
The second option given is, \[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}\],
The energy is raised to -1, force is raised to 0 and linear momentum is raised to 2.
So, we have,
\[\begin{align}
[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-1}}]}^{2}} \\
&\Rightarrow [{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{=1}}{{\text{L}}^{-2}}{{\text{T}}^{2}}][{{\text{M}}^{2}}{{\text{L}}^{2}}{{\text{T}}^{-2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{1}}{{\text{L}}^{0}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of mass.
Now compute the third option.
The third option given is, \[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}\],
The energy is raised to 1, force is raised to -1 and linear momentum is raised to 0.
So, we have,
\[\begin{align}
& [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{0}} \\
& \Rightarrow [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{1}}{{\text{L}}^{2}}{{\text{T}}^{-2}}][{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{0}}{{\text{L}}^{1}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of length.
Therefore, the dimensional formula of the mass is, \[[\text{M}]=[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the length is,\[[\text{L}]=[\text{E}{}^{-1}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the time is, \[[\text{T}]=[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]\]
If energy (E), force (F) and linear momentum (P) are fundamental quantities, then the correct match is a-e, b-f, c-d, thus, the option (C) is correct.
Note:
The things to be on your finger-tips for further information on solving these types of problems are: The units of the given parameters should be taken into consideration while solving the problem. The units are the source for computing the dimensional formulae.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
How many moles and how many grams of NaCl are present class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Plants which grow in shade are called A Sciophytes class 11 biology CBSE

A renewable exhaustible natural resource is A Petroleum class 11 biology CBSE

In which of the following gametophytes is not independent class 11 biology CBSE

Find the molecular mass of Sulphuric Acid class 11 chemistry CBSE
