
How do you simplify \[{{\left( -{{3}^{3x}} \right)}^{-2}}\]?
Answer
561.3k+ views
Hint: Assume the simplified form of the given expression as ‘E’. Write the base of ‘E’ as \[-{{3}^{3x}}=\left( -1\times 3\times {{x}^{3}} \right)\] and apply the formula of exponent and powers as: - \[{{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\] and simplify the value. Now, use the formula \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] to simplify the value of \[{{\left( {{x}^{3}} \right)}^{-2}}\]. Finally, use the identity: - \[{{a}^{-m}}=\dfrac{1}{{{a}^{m}}}\] to get the answer.
Complete step by step answer:
Here, we have been provided with the expression \[{{\left( -{{3}^{3x}} \right)}^{-2}}\] and we are asked to simplify it.
Now, let us assume the value of the given expression as E. So, we have,
\[\Rightarrow E={{\left( -{{3}^{3x}} \right)}^{-2}}\]
We can write the base, i.e., \[\left( -{{3}^{3x}} \right)\] as \[\left( -1\times 3\times {{x}^{3}} \right)\], so we get,
\[\Rightarrow E={{\left( -1\times 3\times {{x}^{3}} \right)}^{-2}}\]
Breaking the terms we get, using the formula: - \[{{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\],
\[\Rightarrow E={{\left( -1 \right)}^{-2}}\times {{\left( 3 \right)}^{-2}}\times {{\left( {{x}^{3}} \right)}^{-2}}\]
Now, applying the formula: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], we get,
\[\begin{align}
& \Rightarrow E={{\left( -1 \right)}^{-2}}\times {{\left( 3 \right)}^{-2}}\times {{x}^{3\times \left( -2 \right)}} \\
& \Rightarrow E={{\left( -1 \right)}^{-2}}\times {{\left( 3 \right)}^{-2}}\times {{x}^{-6}} \\
\end{align}\]
Using the conversion formula: - \[{{a}^{-m}}=\dfrac{1}{{{a}^{m}}}\], we get,
\[\begin{align}
& \Rightarrow E=\dfrac{1}{{{\left( -1 \right)}^{2}}}\times \dfrac{1}{{{\left( 3 \right)}^{2}}}\times \dfrac{1}{{{x}^{6}}} \\
& \Rightarrow E=\dfrac{1}{1}\times \dfrac{1}{9}\times \dfrac{1}{{{x}^{6}}} \\
& \Rightarrow E=\dfrac{1}{9{{x}^{6}}} \\
\end{align}\]
Hence, the above expression represents the simplified form of the given exponential expression.
Note:
One may note that here we have used some basic formulas of the topic ‘exponents and powers’ to solve the question. You must remember some basic formulas such as: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}},{{a}^{m}}\div {{a}^{n}}={{a}^{m-n}},{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] and \[{{a}^{-m}}=\dfrac{1}{{{a}^{m}}}\] because they are used everywhere. There is no easier method to solve the above question. Note that we can also write the simplified form as: - \[\dfrac{1}{9{{x}^{6}}}=\dfrac{x-6}{9}\]. Remember that: - \[{{\left( -1 \right)}^{n}}=1\] when ‘n’ is even and (-1) when ‘n’ is an odd integer.
Complete step by step answer:
Here, we have been provided with the expression \[{{\left( -{{3}^{3x}} \right)}^{-2}}\] and we are asked to simplify it.
Now, let us assume the value of the given expression as E. So, we have,
\[\Rightarrow E={{\left( -{{3}^{3x}} \right)}^{-2}}\]
We can write the base, i.e., \[\left( -{{3}^{3x}} \right)\] as \[\left( -1\times 3\times {{x}^{3}} \right)\], so we get,
\[\Rightarrow E={{\left( -1\times 3\times {{x}^{3}} \right)}^{-2}}\]
Breaking the terms we get, using the formula: - \[{{\left( a\times b \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\],
\[\Rightarrow E={{\left( -1 \right)}^{-2}}\times {{\left( 3 \right)}^{-2}}\times {{\left( {{x}^{3}} \right)}^{-2}}\]
Now, applying the formula: - \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\], we get,
\[\begin{align}
& \Rightarrow E={{\left( -1 \right)}^{-2}}\times {{\left( 3 \right)}^{-2}}\times {{x}^{3\times \left( -2 \right)}} \\
& \Rightarrow E={{\left( -1 \right)}^{-2}}\times {{\left( 3 \right)}^{-2}}\times {{x}^{-6}} \\
\end{align}\]
Using the conversion formula: - \[{{a}^{-m}}=\dfrac{1}{{{a}^{m}}}\], we get,
\[\begin{align}
& \Rightarrow E=\dfrac{1}{{{\left( -1 \right)}^{2}}}\times \dfrac{1}{{{\left( 3 \right)}^{2}}}\times \dfrac{1}{{{x}^{6}}} \\
& \Rightarrow E=\dfrac{1}{1}\times \dfrac{1}{9}\times \dfrac{1}{{{x}^{6}}} \\
& \Rightarrow E=\dfrac{1}{9{{x}^{6}}} \\
\end{align}\]
Hence, the above expression represents the simplified form of the given exponential expression.
Note:
One may note that here we have used some basic formulas of the topic ‘exponents and powers’ to solve the question. You must remember some basic formulas such as: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}},{{a}^{m}}\div {{a}^{n}}={{a}^{m-n}},{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] and \[{{a}^{-m}}=\dfrac{1}{{{a}^{m}}}\] because they are used everywhere. There is no easier method to solve the above question. Note that we can also write the simplified form as: - \[\dfrac{1}{9{{x}^{6}}}=\dfrac{x-6}{9}\]. Remember that: - \[{{\left( -1 \right)}^{n}}=1\] when ‘n’ is even and (-1) when ‘n’ is an odd integer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

