
High elastic modulus in materials arises due to:
(A) High strength of bonds
(B) Weak bonds
(C) Combinations of bonds
(D) none
Answer
429.3k+ views
Hint: In identical products, the higher the modulus of elasticity of the material, the greater the rigidity; doubling the modulus of elasticity doubles the rigidity of the product. The greater the rigidity of a structure, the more force must be applied to produce a given deformation.
Complete answer:
An elastic modulus is a quantity that measures an object or substance's resistance to being deformed elastically when a stress is applied to it. The elastic modulus of an object is defined as the slope of its stress-strain curve in the elastic deformation region. A stiffer material will have a higher elastic modulus.
$ \Rightarrow \delta = \dfrac{{stress}}{{strain}}$
Where stress is the force causing the deformation divided by the area to which the force is applied and strain is the ratio of the change in some parameter caused by the deformation to the original
Young's modulus depends on interatomic bonds as well as the ways in which atoms are packed The insight that Young's modulus represents the strength of the bonds between all the atoms in a crystal has a first important consequence for the elastic properties of sword blades. A few percent of other bonds, for example to carbon atoms in steel, will at best make a difference of a few percent in Young's modulus.
So, the correct answer is (A) High strength of bonds.
Note:
The two factors are; Stress at the yield point of the material. Strain at the yield point of the material. Stress is divided by strain to find the Young's modulus and hence there are the two factors. It is also dependent upon temperature and pressure however. Young's Modulus is in essence the stiffness of a material. In other words, it is how easily it is bent or stretched.
Complete answer:
An elastic modulus is a quantity that measures an object or substance's resistance to being deformed elastically when a stress is applied to it. The elastic modulus of an object is defined as the slope of its stress-strain curve in the elastic deformation region. A stiffer material will have a higher elastic modulus.
$ \Rightarrow \delta = \dfrac{{stress}}{{strain}}$
Where stress is the force causing the deformation divided by the area to which the force is applied and strain is the ratio of the change in some parameter caused by the deformation to the original
Young's modulus depends on interatomic bonds as well as the ways in which atoms are packed The insight that Young's modulus represents the strength of the bonds between all the atoms in a crystal has a first important consequence for the elastic properties of sword blades. A few percent of other bonds, for example to carbon atoms in steel, will at best make a difference of a few percent in Young's modulus.
So, the correct answer is (A) High strength of bonds.
Note:
The two factors are; Stress at the yield point of the material. Strain at the yield point of the material. Stress is divided by strain to find the Young's modulus and hence there are the two factors. It is also dependent upon temperature and pressure however. Young's Modulus is in essence the stiffness of a material. In other words, it is how easily it is bent or stretched.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Whales are warmblooded animals which live in cold seas class 11 biology CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Group the following examples as a pull or a push or class 11 physics CBSE
