Answer
Verified
363k+ views
Hint: We need to know about the concept of Hall effect and its applications.Hall effect is a phenomenon that relates the applied magnetic field with the current density and the related parameters. It is due to the production of a transverse electric field.
Complete step by step answer:
Hall effect was discovered in 1879 by Edwin Herbert Hall. When a perpendicular magnetic field is applied to a current carrying conductor, a measurable amount of voltage is produced. This is known as the Hall effect. The voltage is known as Hall voltage.Hall effect is used to measure the carrier concentration of the materials to categorize them as semiconductors or insulators.
Equilibrium is reached within the conductor when the magnetic force equals the electric force.
$eE = e{v_d}B$
where $e$ is the electronic charge, $E$ is the electric field, $B$ is the magnetic field and ${v_d}$ is the drift velocity.
$ \Rightarrow {v_d} = \dfrac{E}{B}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,........(1)$
Now current flowing through a conductor can be given as $I = neA{v_d}$ where I is the current flowing through the conductor, n is the number of charge carriers per volume, A is the cross sectional area of the conductor.
Substituting from equation (1) we get,
$I = neA(\dfrac{E}{B})\,\,\,\,\,\,\,\,\,\,\,\,\,\,.......(2)$
Now the potential gradient would give us the electric field.
Hence, $E = \dfrac{V}{l}$ where V is the Hall voltage and l is the length of the conductor.
Substituting in the equation and then rearranging we get,
$V = \dfrac{{IBl}}{{neA}}\,\,\,\,\,\,\,\,\,\,\,\,.........(3)$
The current flowing in the circuit can be measured with an ammeter, Hall voltage by voltmeter. For a given conductor material, $\dfrac{l}{A}$ is specified. The applied magnetic field is also known.Thus, by substituting the values in the above formula, we calculate the carrier concentration in a material.
Hence, hall effect is used to measure carrier concentration in a material.
Note: The Hall voltage can be used to determine which type of charge carriers are present inside a material. If the sign of Hall voltage is negative, then electrons are the majority charge carriers and if the sign is positive, holes are the majority charge carriers. In most metals, electrons are the charge carriers except tungsten and beryllium.
Complete step by step answer:
Hall effect was discovered in 1879 by Edwin Herbert Hall. When a perpendicular magnetic field is applied to a current carrying conductor, a measurable amount of voltage is produced. This is known as the Hall effect. The voltage is known as Hall voltage.Hall effect is used to measure the carrier concentration of the materials to categorize them as semiconductors or insulators.
Equilibrium is reached within the conductor when the magnetic force equals the electric force.
$eE = e{v_d}B$
where $e$ is the electronic charge, $E$ is the electric field, $B$ is the magnetic field and ${v_d}$ is the drift velocity.
$ \Rightarrow {v_d} = \dfrac{E}{B}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,........(1)$
Now current flowing through a conductor can be given as $I = neA{v_d}$ where I is the current flowing through the conductor, n is the number of charge carriers per volume, A is the cross sectional area of the conductor.
Substituting from equation (1) we get,
$I = neA(\dfrac{E}{B})\,\,\,\,\,\,\,\,\,\,\,\,\,\,.......(2)$
Now the potential gradient would give us the electric field.
Hence, $E = \dfrac{V}{l}$ where V is the Hall voltage and l is the length of the conductor.
Substituting in the equation and then rearranging we get,
$V = \dfrac{{IBl}}{{neA}}\,\,\,\,\,\,\,\,\,\,\,\,.........(3)$
The current flowing in the circuit can be measured with an ammeter, Hall voltage by voltmeter. For a given conductor material, $\dfrac{l}{A}$ is specified. The applied magnetic field is also known.Thus, by substituting the values in the above formula, we calculate the carrier concentration in a material.
Hence, hall effect is used to measure carrier concentration in a material.
Note: The Hall voltage can be used to determine which type of charge carriers are present inside a material. If the sign of Hall voltage is negative, then electrons are the majority charge carriers and if the sign is positive, holes are the majority charge carriers. In most metals, electrons are the charge carriers except tungsten and beryllium.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE