From $5$ consonants and $4$ vowels, how many words can be formed by using $3$ consonants and $2$ vowels.
A. 9440
B. 6800
C. 3600
D. 7200
Answer
Verified
504.6k+ views
Hint: The number of ways a word can form from $5$ consonants by using $3$ consonants $ = $ ${}^5{C_3}$ and from $4$ vowels by using $2$ vowels $ = $${}^4{C_2}$, hence the number of words can be $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$. Use this to find the no. of words.
Complete step-by-step solution:
According to the question it is given that :
From$5$consonants , $3$ consonants can be selected and from $4$ vowels , $2$ vowels can be selected .
So, from $5$ consonants , $3$ consonants can be selected in ${}^5{C_3}$ ways.
From $4$ vowels ,$2$ vowels can be selected in ${}^4{C_2}$ways.
Now with every selection , the number of ways of arranging $5$ letters in ${}^5{P_5}$ways.
Hence, total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$\therefore $we know that
$
{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} \\
{}^n{P_r} = \dfrac{{n!}}{{(n - r)!}} \\
$
Hence , total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$
= \dfrac{{5!}}{{3!(5 - 3)!}} \times \dfrac{{4!}}{{2!(4 - 2)!}} \times \dfrac{{5!}}{{(5 - 5)!}} \\
= \dfrac{{5 \times 4 \times 3!}}{{3! \times 2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2! \times 2!}} \times 5! \\
= 5 \times 2 \times 2 \times 3 \times 120 \\
= 7200 \\
$
Note: It is advisable in such types of questions we should see that what are all possibilities that words can be formed , for this one must have a basic understanding of permutation and combination. Here we have used $ {}5{P_5}$ for arranging 5 words.
Complete step-by-step solution:
According to the question it is given that :
From$5$consonants , $3$ consonants can be selected and from $4$ vowels , $2$ vowels can be selected .
So, from $5$ consonants , $3$ consonants can be selected in ${}^5{C_3}$ ways.
From $4$ vowels ,$2$ vowels can be selected in ${}^4{C_2}$ways.
Now with every selection , the number of ways of arranging $5$ letters in ${}^5{P_5}$ways.
Hence, total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$\therefore $we know that
$
{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} \\
{}^n{P_r} = \dfrac{{n!}}{{(n - r)!}} \\
$
Hence , total number of words $ = {}^5{C_3} \times {}^4{C_2} \times {}^5{P_5}$
$
= \dfrac{{5!}}{{3!(5 - 3)!}} \times \dfrac{{4!}}{{2!(4 - 2)!}} \times \dfrac{{5!}}{{(5 - 5)!}} \\
= \dfrac{{5 \times 4 \times 3!}}{{3! \times 2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2! \times 2!}} \times 5! \\
= 5 \times 2 \times 2 \times 3 \times 120 \\
= 7200 \\
$
Note: It is advisable in such types of questions we should see that what are all possibilities that words can be formed , for this one must have a basic understanding of permutation and combination. Here we have used $ {}5{P_5}$ for arranging 5 words.
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State the laws of reflection of light
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Why does niobium have a d4s1 electron configuration class 11 chemistry CBSE