Answer
Verified
363.9k+ views
Hint: We need to learn the atomic number of the elements in the periodic table. Hence atomic number of $He^+$ is represented as $Z$ i.e. $Z = 2$.Then by using a single electron species formula we can calculate the frequency and wavelength where ${n_1} = 2\,\,and\,\,{n_2} = 5$.
Formula Used:
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where,
$\lambda = $ Wavelength
$R = $ Rydberg Constant
$n = $ Principle Quantum number
$v = \dfrac{c}{\lambda }$
Where,
$v = $ Frequency
$c = $ Speed of light
Complete step by step solution:
A photon transmits from $n = 5\,\,to\,\,n = 2$ state. While transition some wavelength and frequency is generated which we have to calculate.
As given in the question,
A photon in $H{e^ + }\,\,ion$ state moves from ${n_2} = 5\,\,to\,\,{n_1} = 2$ .
Using Single Electron Species, we get
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right) \cdot \cdot \cdot \cdot \left( 1 \right)$
Where,
$\lambda = $ Wavelength
$R = $ Rydberg Constant
$ \Rightarrow R = 1.097 \times {10^7}\,{m^{ - 1}}$
$Z = $ Atomic number of $H{e^ + }$ ion $ = 2$
${n_1}$ and ${n_2}$ (Given)
Putting all these values in the equation $\left( 1 \right)$ , we get
$\dfrac{1}{\lambda } = 1.097 \times {10^7}{m^{ - 1}} \times {2^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{5^2}}}} \right)$
As Wavelength is calculated in $nm$convert the above equation into $nm$ by multiplying the above formula with ${10^{ - 9}}$ .
$\dfrac{1}{\lambda } = 1.097 \times {10^7} \times {10^{ - 9}}n{m^{ - 1}} \times 4\left( {\dfrac{1}{4} - \dfrac{1}{{25}}} \right)$
$ \Rightarrow \dfrac{1}{\lambda } = 1.097 \times {10^{ - 2}}n{m^{ - 1}} \times 4\left( {\dfrac{{25 - 4}}{{100}}} \right)$
$ \Rightarrow \dfrac{1}{\lambda } = 1.097 \times {10^{ - 2}}n{m^{ - 1}} \times \left( {\dfrac{{21}}{{25}}} \right)$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{23.037 \times {{10}^{ - 2}}}}{{25}}n{m^{ - 1}}$
$ \Rightarrow \lambda = \dfrac{{25 \times 100}}{{23.037}}nm$
$ \Rightarrow \lambda = 108.5nm$
Hence the wavelength a photon generates during transition is $108.5nm$ .
Now we have to calculate the frequency,
We know that,
$v = \dfrac{c}{\lambda }$
Here
$c = 3.8 \times {10^8}m{s^{ - 1}}$ -Speed of light
By putting the respective values in the frequency equation we will get,
$v = \dfrac{{3.8 \times {{10}^8}m{s^{ - 1}}}}{{108.5nm}}$
Now to get a simplified value of frequency we need to convert $nm$ into $m$ .
Now multiply the denominator with ${10^{ - 9}}$.
We get,
$v = \dfrac{{3.8 \times {{10}^8}m{s^{ - 1}}}}{{108.5 \times {{10}^{ - 9}}m}}$
$ \Rightarrow v = 0.035 \times {10^{8 + 9}}{s^{ - 1}}$
$ \Rightarrow v = 0.035 \times {10^{17}}{s^{ - 1}}$
$ \Rightarrow v = 3.50 \times {10^{15}}{s^{ - 1}}$
Therefore the frequency a photon generates during transition is $3.50 \times {10^{15}}{s^{ - 1}}$.
Note:
We always keep in mind while calculating wavelengths that convert the meter into nanometers. Generally we make a common mistake while writing the atomic number of an ion. Atomic number never depends on the number of electrons, it depends on the number of protons present in an element.
Formula Used:
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)$
Where,
$\lambda = $ Wavelength
$R = $ Rydberg Constant
$n = $ Principle Quantum number
$v = \dfrac{c}{\lambda }$
Where,
$v = $ Frequency
$c = $ Speed of light
Complete step by step solution:
A photon transmits from $n = 5\,\,to\,\,n = 2$ state. While transition some wavelength and frequency is generated which we have to calculate.
As given in the question,
A photon in $H{e^ + }\,\,ion$ state moves from ${n_2} = 5\,\,to\,\,{n_1} = 2$ .
Using Single Electron Species, we get
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right) \cdot \cdot \cdot \cdot \left( 1 \right)$
Where,
$\lambda = $ Wavelength
$R = $ Rydberg Constant
$ \Rightarrow R = 1.097 \times {10^7}\,{m^{ - 1}}$
$Z = $ Atomic number of $H{e^ + }$ ion $ = 2$
${n_1}$ and ${n_2}$ (Given)
Putting all these values in the equation $\left( 1 \right)$ , we get
$\dfrac{1}{\lambda } = 1.097 \times {10^7}{m^{ - 1}} \times {2^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{5^2}}}} \right)$
As Wavelength is calculated in $nm$convert the above equation into $nm$ by multiplying the above formula with ${10^{ - 9}}$ .
$\dfrac{1}{\lambda } = 1.097 \times {10^7} \times {10^{ - 9}}n{m^{ - 1}} \times 4\left( {\dfrac{1}{4} - \dfrac{1}{{25}}} \right)$
$ \Rightarrow \dfrac{1}{\lambda } = 1.097 \times {10^{ - 2}}n{m^{ - 1}} \times 4\left( {\dfrac{{25 - 4}}{{100}}} \right)$
$ \Rightarrow \dfrac{1}{\lambda } = 1.097 \times {10^{ - 2}}n{m^{ - 1}} \times \left( {\dfrac{{21}}{{25}}} \right)$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{23.037 \times {{10}^{ - 2}}}}{{25}}n{m^{ - 1}}$
$ \Rightarrow \lambda = \dfrac{{25 \times 100}}{{23.037}}nm$
$ \Rightarrow \lambda = 108.5nm$
Hence the wavelength a photon generates during transition is $108.5nm$ .
Now we have to calculate the frequency,
We know that,
$v = \dfrac{c}{\lambda }$
Here
$c = 3.8 \times {10^8}m{s^{ - 1}}$ -Speed of light
By putting the respective values in the frequency equation we will get,
$v = \dfrac{{3.8 \times {{10}^8}m{s^{ - 1}}}}{{108.5nm}}$
Now to get a simplified value of frequency we need to convert $nm$ into $m$ .
Now multiply the denominator with ${10^{ - 9}}$.
We get,
$v = \dfrac{{3.8 \times {{10}^8}m{s^{ - 1}}}}{{108.5 \times {{10}^{ - 9}}m}}$
$ \Rightarrow v = 0.035 \times {10^{8 + 9}}{s^{ - 1}}$
$ \Rightarrow v = 0.035 \times {10^{17}}{s^{ - 1}}$
$ \Rightarrow v = 3.50 \times {10^{15}}{s^{ - 1}}$
Therefore the frequency a photon generates during transition is $3.50 \times {10^{15}}{s^{ - 1}}$.
Note:
We always keep in mind while calculating wavelengths that convert the meter into nanometers. Generally we make a common mistake while writing the atomic number of an ion. Atomic number never depends on the number of electrons, it depends on the number of protons present in an element.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE