Answer
Verified
470.7k+ views
Hint: Begin by first finding the number of nodes that lie between the two points in a stationary wave. From this you can deduce the phase difference of the stationary wave by looking at which node region lies across both the points. After this determine the phase difference between the two points in the travelling wave by calculating the difference between the two positions. Then divide the two to get the final ratio.
Formula Used: For a travelling wave, phase difference between two points: $\phi = k\Delta x$, where k is the wave vector and $\Delta x$ is the difference between the position of two points.
For a stationary wave, phase difference between two points: $\phi = n\pi$, where n is the number of nodes.
Complete answer:
Let us first consider the stationary wave whose equation is given by $y_1 = a\;sin(kx)cos(\omega t)$.
Now, we know that successive nodes in a stationary wave are found at $n\pi$ phase difference.
This means that, at node points : $sin(kx) = n\pi \Rightarrow x = \dfrac{n\pi}{k}$, where n= 0,1,2, so on.
Therefore, the nodes are found at $\dfrac{\pi}{k}$, $\dfrac{2\pi}{k}$, $\dfrac{3\pi}{k}$, and so on.
Now, the two points are given as $x_1 = \dfrac{\pi}{3k}$ and $x_2 =\dfrac{3\pi}{2k}$.
We see that $x_1 = \dfrac{\pi}{3k}$<$\dfrac{\pi}{k}$, and $\dfrac{\pi}{k}$ < $x_2 = \dfrac{3\pi}{2k}$<$\dfrac{2\pi}{k}$
This means that there is only one node between the two points, given by
Now, from $kx = n\pi \Rightarrow k\left(\dfrac{\pi}{k}\right) = n\pi \Rightarrow n = 1$
The, $kx = \pi \Rightarrow x = \dfrac{\pi}{k}$
And this gives a phase difference
$\phi_1 = kx = k\left(\dfrac{\pi}{k}\right) \Rightarrow \phi_1 = \pi$ for the stationary wave.
For the travelling wave, the phase difference $\phi_2$ is given as:
$\phi_2 = k(x_2)-k(x_1) = k(x_2-x_1) = k\left(\dfrac{3\pi}{2k}-\dfrac{\pi}{3k}\right) = \dfrac{3\pi}{2} - \dfrac{\pi}{3} = \dfrac{9\pi-2\pi}{6} \Rightarrow \phi_2 = \dfrac{7\pi}{6}$
Therefore, the ratio of the two phase differences:
$\dfrac{\phi_1}{\phi_2} = \dfrac{\pi}{\left(\dfrac{7\pi}{6}\right)} = \dfrac{6\pi}{7\pi} = \dfrac{6}{7}$
Therefore, the correct answer will be D. $\dfrac{6}{7}$.
Note:
It is important to determine the number of nodes that lie between the two points on the stationary wave as this is the way to ultimately find the phase difference depending on whether the points are present in successive loops of the wave or not. Note that the two points do not have any nodes at their position since the nodes are formed at $\pi$, $2\pi$, and so on. However, $x_2$ lies at an antinodes lie at $\dfrac{\pi}{2}$, $\dfrac{3\pi}{2}$ and so on.
Formula Used: For a travelling wave, phase difference between two points: $\phi = k\Delta x$, where k is the wave vector and $\Delta x$ is the difference between the position of two points.
For a stationary wave, phase difference between two points: $\phi = n\pi$, where n is the number of nodes.
Complete answer:
Let us first consider the stationary wave whose equation is given by $y_1 = a\;sin(kx)cos(\omega t)$.
Now, we know that successive nodes in a stationary wave are found at $n\pi$ phase difference.
This means that, at node points : $sin(kx) = n\pi \Rightarrow x = \dfrac{n\pi}{k}$, where n= 0,1,2, so on.
Therefore, the nodes are found at $\dfrac{\pi}{k}$, $\dfrac{2\pi}{k}$, $\dfrac{3\pi}{k}$, and so on.
Now, the two points are given as $x_1 = \dfrac{\pi}{3k}$ and $x_2 =\dfrac{3\pi}{2k}$.
We see that $x_1 = \dfrac{\pi}{3k}$<$\dfrac{\pi}{k}$, and $\dfrac{\pi}{k}$ < $x_2 = \dfrac{3\pi}{2k}$<$\dfrac{2\pi}{k}$
This means that there is only one node between the two points, given by
Now, from $kx = n\pi \Rightarrow k\left(\dfrac{\pi}{k}\right) = n\pi \Rightarrow n = 1$
The, $kx = \pi \Rightarrow x = \dfrac{\pi}{k}$
And this gives a phase difference
$\phi_1 = kx = k\left(\dfrac{\pi}{k}\right) \Rightarrow \phi_1 = \pi$ for the stationary wave.
For the travelling wave, the phase difference $\phi_2$ is given as:
$\phi_2 = k(x_2)-k(x_1) = k(x_2-x_1) = k\left(\dfrac{3\pi}{2k}-\dfrac{\pi}{3k}\right) = \dfrac{3\pi}{2} - \dfrac{\pi}{3} = \dfrac{9\pi-2\pi}{6} \Rightarrow \phi_2 = \dfrac{7\pi}{6}$
Therefore, the ratio of the two phase differences:
$\dfrac{\phi_1}{\phi_2} = \dfrac{\pi}{\left(\dfrac{7\pi}{6}\right)} = \dfrac{6\pi}{7\pi} = \dfrac{6}{7}$
Therefore, the correct answer will be D. $\dfrac{6}{7}$.
Note:
It is important to determine the number of nodes that lie between the two points on the stationary wave as this is the way to ultimately find the phase difference depending on whether the points are present in successive loops of the wave or not. Note that the two points do not have any nodes at their position since the nodes are formed at $\pi$, $2\pi$, and so on. However, $x_2$ lies at an antinodes lie at $\dfrac{\pi}{2}$, $\dfrac{3\pi}{2}$ and so on.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
Define cubit handspan armlength and footspan class 11 physics CBSE
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
Give a brief account on the canal system in sponge class 11 biology CBSE
Assertion Pila has dual mode of respiration Reason class 11 biology CBSE