
Energy required for the electron excitation in $L{i^{ + + }}$ from the first to the third Bohr orbit is?
A. 12.1 eV
B. 36.3 eV
C. 108.8 eV
D. 122.4 eV
Answer
571.2k+ views
Hint: In order to give solution of the above question, we need to use the energy of ${n^{th}}$orbit of hydrogen atom so that we have to solve for the first orbit and the third orbit then we need to find the difference of two.
Complete step by step answer:
The energy of the electron in the ${n^{th}}$ orbit of a hydrogen atom is given by
${E_n} = \dfrac{{ - 13.6{Z^2}}}{{{n^2}}}eV$
For $L{i^{ + + }}$, Z=3
In the case of an first orbit, n = 1, where n be the number of orbital level
$
{E_1} = \dfrac{{ - 13.6 \times {3^2}}}{1} \\
\Rightarrow {E_1} = - 122.4eV \\
$
In the case of an third orbit, n=3
$
{E_3} = \dfrac{{ - 13.6 \times {3^2}}}{{{3^2}}} \\
\Rightarrow {E_3} = - 13.6eV \\
$
Hence, the energy difference which is given by
$
\Delta E = {E_2} - {E_1} \\
\Rightarrow \Delta E = - 13.6 - ( - 122.4) \\
\Rightarrow \Delta E = 108.8eV \\
$
Hence the correct option is C.
Note: Practically the electron which is present in a hydrogen atom carries certain energies. Such energies are usually called the energy levels of hydrogen. The quantum number n is denoted as the different energy levels of the hydrogen atom, where n varies from one to infinity. The first energy level is taken as the lowest energy level or ground state and the infinity is taken as the highest one.
Complete step by step answer:
The energy of the electron in the ${n^{th}}$ orbit of a hydrogen atom is given by
${E_n} = \dfrac{{ - 13.6{Z^2}}}{{{n^2}}}eV$
For $L{i^{ + + }}$, Z=3
In the case of an first orbit, n = 1, where n be the number of orbital level
$
{E_1} = \dfrac{{ - 13.6 \times {3^2}}}{1} \\
\Rightarrow {E_1} = - 122.4eV \\
$
In the case of an third orbit, n=3
$
{E_3} = \dfrac{{ - 13.6 \times {3^2}}}{{{3^2}}} \\
\Rightarrow {E_3} = - 13.6eV \\
$
Hence, the energy difference which is given by
$
\Delta E = {E_2} - {E_1} \\
\Rightarrow \Delta E = - 13.6 - ( - 122.4) \\
\Rightarrow \Delta E = 108.8eV \\
$
Hence the correct option is C.
Note: Practically the electron which is present in a hydrogen atom carries certain energies. Such energies are usually called the energy levels of hydrogen. The quantum number n is denoted as the different energy levels of the hydrogen atom, where n varies from one to infinity. The first energy level is taken as the lowest energy level or ground state and the infinity is taken as the highest one.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

