
Energy required for the electron excitation in $L{i^{ + + }}$ from the first to the third Bohr orbit is?
A. 12.1 eV
B. 36.3 eV
C. 108.8 eV
D. 122.4 eV
Answer
516.3k+ views
Hint: In order to give solution of the above question, we need to use the energy of ${n^{th}}$orbit of hydrogen atom so that we have to solve for the first orbit and the third orbit then we need to find the difference of two.
Complete step by step answer:
The energy of the electron in the ${n^{th}}$ orbit of a hydrogen atom is given by
${E_n} = \dfrac{{ - 13.6{Z^2}}}{{{n^2}}}eV$
For $L{i^{ + + }}$, Z=3
In the case of an first orbit, n = 1, where n be the number of orbital level
$
{E_1} = \dfrac{{ - 13.6 \times {3^2}}}{1} \\
\Rightarrow {E_1} = - 122.4eV \\
$
In the case of an third orbit, n=3
$
{E_3} = \dfrac{{ - 13.6 \times {3^2}}}{{{3^2}}} \\
\Rightarrow {E_3} = - 13.6eV \\
$
Hence, the energy difference which is given by
$
\Delta E = {E_2} - {E_1} \\
\Rightarrow \Delta E = - 13.6 - ( - 122.4) \\
\Rightarrow \Delta E = 108.8eV \\
$
Hence the correct option is C.
Note: Practically the electron which is present in a hydrogen atom carries certain energies. Such energies are usually called the energy levels of hydrogen. The quantum number n is denoted as the different energy levels of the hydrogen atom, where n varies from one to infinity. The first energy level is taken as the lowest energy level or ground state and the infinity is taken as the highest one.
Complete step by step answer:
The energy of the electron in the ${n^{th}}$ orbit of a hydrogen atom is given by
${E_n} = \dfrac{{ - 13.6{Z^2}}}{{{n^2}}}eV$
For $L{i^{ + + }}$, Z=3
In the case of an first orbit, n = 1, where n be the number of orbital level
$
{E_1} = \dfrac{{ - 13.6 \times {3^2}}}{1} \\
\Rightarrow {E_1} = - 122.4eV \\
$
In the case of an third orbit, n=3
$
{E_3} = \dfrac{{ - 13.6 \times {3^2}}}{{{3^2}}} \\
\Rightarrow {E_3} = - 13.6eV \\
$
Hence, the energy difference which is given by
$
\Delta E = {E_2} - {E_1} \\
\Rightarrow \Delta E = - 13.6 - ( - 122.4) \\
\Rightarrow \Delta E = 108.8eV \\
$
Hence the correct option is C.
Note: Practically the electron which is present in a hydrogen atom carries certain energies. Such energies are usually called the energy levels of hydrogen. The quantum number n is denoted as the different energy levels of the hydrogen atom, where n varies from one to infinity. The first energy level is taken as the lowest energy level or ground state and the infinity is taken as the highest one.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Knock knee syndrome is caused by A Fluoride pollution class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What organs are located on the left side of your body class 11 biology CBSE

Blood is a type of A Epithelial tissue B Muscular tissue class 11 biology CBSE

The dam built at Hanuman Nagar on the IndianNepal border class 11 social science CBSE
