Answer
Verified
461.1k+ views
Hint: potential energy is the energy required by the body in order to take it from the infinity to a specific position according to our need. Torque is the rotational analogue for the force in mechanics. It is the force required for the body in order to rotate in a specific way. This all will help you in answering this question.
Complete answer:
The force experienced by the charges can be shown as \[qE\] and \[-qE\] , as represented in the diagram.
\[\tau =p\times E\]
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{{{\tau }_{ext}}\left( \theta \right)}d\theta \]
Substituting the value of the torque in this will give,
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{pE\sin \theta }d\theta =pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
As we all know that the work done in taking a system of charges from infinity to a specific configuration is explained as the potential energy of the system. That is the potential energy of the system can be shown as,
\[U\left( \theta \right)=pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
Note:
The electric potential and potential energy are not the same. The major difference is that electric potential at a position in an electric field is the measure of work done to take the unit positive charge from infinity to that position. The electric potential energy is defined as the energy that is required to move a charge against the electric field.
Complete answer:
The force experienced by the charges can be shown as \[qE\] and \[-qE\] , as represented in the diagram.
\[\tau =p\times E\]
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{{{\tau }_{ext}}\left( \theta \right)}d\theta \]
Substituting the value of the torque in this will give,
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{pE\sin \theta }d\theta =pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
As we all know that the work done in taking a system of charges from infinity to a specific configuration is explained as the potential energy of the system. That is the potential energy of the system can be shown as,
\[U\left( \theta \right)=pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
Note:
The electric potential and potential energy are not the same. The major difference is that electric potential at a position in an electric field is the measure of work done to take the unit positive charge from infinity to that position. The electric potential energy is defined as the energy that is required to move a charge against the electric field.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Which animal never drinks water in its entire life class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
What is composite fish culture What are the advantages class 12 biology CBSE