
When an elastic material with Young’s modulus Y is subjected to stretching stress S, elastic energy stored per unit volume of the material is
$\begin{align}
& a)\dfrac{YS}{2} \\
& b)\dfrac{{{S}^{2}}Y}{2} \\
& c)\dfrac{{{S}^{2}}}{2Y} \\
& d)\dfrac{S}{2Y} \\
\end{align}$
Answer
499.2k+ views
Hint: When an elastic material is subjected to stretching stress, the work done in stretching it is stored in the form of potential energy in the wire. Let us say we extend the wire of length L, area of cross section A and Young’s modulus Y by $\Delta L$(change in length), Then the required force is $F=\dfrac{Y.A.\Delta L}{L}...(1)$. From this expression we can see that the force acting is a variable force. Hence we need to integrate the required work done by the above action of force.
Complete answer:
In the above diagram we can see that the wire of length L gets extended to a final length of $L+\Delta L$. From the beginning let us say we start to extend the wire and we extend it to a length x from the initial length L. Furthermore we want to extend it by a small length dx. The work done in doing so is given by,
$E=F.dx,\text{where F is the is applied force}$. Substituting equation 1 for F and integrating the work done for extending the wire we get,
$\begin{align}
& E=\int\limits_{0}^{\Delta L}{\left( \dfrac{Y.A.x}{L} \right)}dx \\
& \Rightarrow E=\dfrac{YA}{L}\int\limits_{0}^{\Delta L}{x}dx \\
& \Rightarrow E=\dfrac{YA}{L}\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{\Delta L} \\
& \Rightarrow E=\dfrac{YA}{2L}\left[ \Delta {{L}^{2}}-0 \right] \\
& \Rightarrow E=\dfrac{YA\Delta {{L}^{2}}}{2L} \\
\end{align}$
Multiplying and dividing by L the above equation we get,
$E=\dfrac{YA{{\left( \Delta L \right)}^{2}}L}{2{{L}^{2}}}$
The term $\dfrac{\Delta L}{L}$ is the strain in the material and the term AL represents the volume (V)of the material.
Hence the above equation becomes,
$\begin{align}
& E=\dfrac{Y\left( AL \right)}{2}{{\left( \dfrac{\Delta L}{L} \right)}^{2}} \\
& E=\dfrac{YV{{\left( strain \right)}^{2}}}{2}....(2) \\
\end{align}$
The Young’s modulus for a wire is given by stress (S) by strain i.e. $Y=\dfrac{S}{strain}$hence substituting for strain in equation 2 we get,
$\begin{align}
& E=\dfrac{YV}{2}{{\left( \dfrac{S}{Y} \right)}^{2}} \\
& E=\dfrac{V{{S}^{2}}}{2Y}\text{ hence energy per unit volume is,} \\
& \dfrac{E}{V}=\dfrac{{{S}^{2}}}{2Y} \\
\end{align}$
So, the correct answer is “Option C”.
Note:
The above condition is analogous to potential energy of a spring. As we extend the spring the force required is directly proportional to the length of extension. If we still want to extend it further more and more force is required to extend any further.
Complete answer:
In the above diagram we can see that the wire of length L gets extended to a final length of $L+\Delta L$. From the beginning let us say we start to extend the wire and we extend it to a length x from the initial length L. Furthermore we want to extend it by a small length dx. The work done in doing so is given by,
$E=F.dx,\text{where F is the is applied force}$. Substituting equation 1 for F and integrating the work done for extending the wire we get,
$\begin{align}
& E=\int\limits_{0}^{\Delta L}{\left( \dfrac{Y.A.x}{L} \right)}dx \\
& \Rightarrow E=\dfrac{YA}{L}\int\limits_{0}^{\Delta L}{x}dx \\
& \Rightarrow E=\dfrac{YA}{L}\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{\Delta L} \\
& \Rightarrow E=\dfrac{YA}{2L}\left[ \Delta {{L}^{2}}-0 \right] \\
& \Rightarrow E=\dfrac{YA\Delta {{L}^{2}}}{2L} \\
\end{align}$

Multiplying and dividing by L the above equation we get,
$E=\dfrac{YA{{\left( \Delta L \right)}^{2}}L}{2{{L}^{2}}}$
The term $\dfrac{\Delta L}{L}$ is the strain in the material and the term AL represents the volume (V)of the material.
Hence the above equation becomes,
$\begin{align}
& E=\dfrac{Y\left( AL \right)}{2}{{\left( \dfrac{\Delta L}{L} \right)}^{2}} \\
& E=\dfrac{YV{{\left( strain \right)}^{2}}}{2}....(2) \\
\end{align}$
The Young’s modulus for a wire is given by stress (S) by strain i.e. $Y=\dfrac{S}{strain}$hence substituting for strain in equation 2 we get,
$\begin{align}
& E=\dfrac{YV}{2}{{\left( \dfrac{S}{Y} \right)}^{2}} \\
& E=\dfrac{V{{S}^{2}}}{2Y}\text{ hence energy per unit volume is,} \\
& \dfrac{E}{V}=\dfrac{{{S}^{2}}}{2Y} \\
\end{align}$
So, the correct answer is “Option C”.
Note:
The above condition is analogous to potential energy of a spring. As we extend the spring the force required is directly proportional to the length of extension. If we still want to extend it further more and more force is required to extend any further.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
