Answer
Verified
383.7k+ views
Hint: In order to solve this question we need to understand distance and displacement of a body. So a distance is defined as the total path length covered between initial and final points, it is a scalar quantity and path dependent also.
Complete step by step answer:
Displacement is defined as the shortest path travelled between initial and final points, it is a vector quantity as it has both magnitude and direction also can be added by triangle of vector addition, displacement is path independent, it only depends on initial and final position of the path travelled.
Here we are assuming that the race tracks are circular in nature. So if a driver completes the path then he must start from a point and return to the same point.So distance is equal to total path travelled, hence distance is $d = 500\,m$. But since the car starts from the same point and returns to almost the same point, the displacement of the car turns out to be $\vec D = 0$ because displacement does not depend on path travelled, it only depends on initial and final position.
Note: It should be remembered that here we assume that the race car starts from the same point and returns at the same, this is an ideal case but in reality the racing car stops not exactly at the beginning point but very close to it so displacement is either zero or very close to zero.
Complete step by step answer:
Displacement is defined as the shortest path travelled between initial and final points, it is a vector quantity as it has both magnitude and direction also can be added by triangle of vector addition, displacement is path independent, it only depends on initial and final position of the path travelled.
Here we are assuming that the race tracks are circular in nature. So if a driver completes the path then he must start from a point and return to the same point.So distance is equal to total path travelled, hence distance is $d = 500\,m$. But since the car starts from the same point and returns to almost the same point, the displacement of the car turns out to be $\vec D = 0$ because displacement does not depend on path travelled, it only depends on initial and final position.
Note: It should be remembered that here we assume that the race car starts from the same point and returns at the same, this is an ideal case but in reality the racing car stops not exactly at the beginning point but very close to it so displacement is either zero or very close to zero.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
Define cubit handspan armlength and footspan class 11 physics CBSE
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
Give a brief account on the canal system in sponge class 11 biology CBSE
Assertion Pila has dual mode of respiration Reason class 11 biology CBSE