
An electromagnetic wave travelling in the x-direction has frequency of $ 2\times {{10}^{14}}Hz $ and electric field amplitude of $ 27V{{m}^{-1}} $ , from the options below, which one describes the magnetic field for this
(A) $ \overrightarrow{B}\left( x,t \right)=\left( 3\times {{10}^{-8}}\text{ T} \right)\hat{j}\text{ }\sin \left[ 2\pi \left( 1\cdot 5\times {{10}^{-8}}x-2\times {{10}^{14}}t \right) \right] $
(B) $ \overrightarrow{B}\left( x,t \right)=\left( 9\times {{10}^{-8}}T \right)\hat{j}\text{ }\sin \left[ \left( 1\cdot 5\times {{10}^{-6}}x-2\times {{10}^{14}}t \right) \right] $
(C) $ \overrightarrow{B}\left( x,t \right)=\left( 9\times {{10}^{-8}}T \right)\hat{k}\text{ }\sin \left[ 2\pi \left( 0\cdot 66\times {{10}^{6}}x-2\times {{10}^{14}}t \right) \right] $
(D) $ \overrightarrow{B}\left( x,t \right)=\left( 9\times {{10}^{-8}}T \right)\hat{i}\text{ }\sin \left[ 2\pi \left( 1\cdot 5\times {{10}^{-8}}x-2x\times {{10}^{14}}t \right) \right] $
Answer
486.9k+ views
Hint: Wave function for a given plane electromagnetic wave is written as
$ \text{B=Bo}\sin \left( kx-wt \right) $
In case of plane electromagnetic waves, direction of propagation is along the cross product $ \overrightarrow{E}\times \overrightarrow{B} $ . Hence, if direction of propagation is along x axis then $ \overrightarrow{E} $ is along y-axis and $ \overrightarrow{B} $ is along Z axis. From this, the direction of the magnetic field is found.
Complete step by step solution
We know that
$ \text{Bo}=\dfrac{\text{Eo}}{\text{c}} $
Now,
$ \text{Eo=27} $ …. Given
$ \text{c}=3\times {{10}^{8}} $
Hence
$ \text{Bo}=\dfrac{27}{3\times {{10}^{8}}}=9\times {{10}^{-8}} $
As the direction of propagation is along the x-axis, therefore $ \text{Bo} $ is along the z axis.
So $ \overrightarrow{\text{Bo}}=\left( 9\times {{10}^{-8}} \right)\hat{k} $
Now $ k=\dfrac{2\pi }{\lambda } $ and $ w=\dfrac{2\pi }{T} $
So putting these values in equation
$ \text{B=Bo }\sin \left( kx-wt \right) $
Now
$ \begin{align}
& \lambda =\dfrac{c}{v} \\
& =\dfrac{3\times {{10}^{8}}}{2\times {{10}^{14}}}=1\cdot 5\times {{10}^{-6}}m \\
\end{align} $
And
$ T=\dfrac{1}{v}=\dfrac{1}{2\times {{10}^{14}}}=0\cdot 5\times {{10}^{-14}}\text{ sec} $
Putting these values in equation (1), we get
$ \begin{align}
& \text{B}=\left( 9\times {{10}^{-8}} \right)\hat{k}\text{ sin}\left[ 2\pi \left( \dfrac{x}{1\cdot 5\times {{10}^{-6}}}-\dfrac{t}{0\cdot 5\times {{10}^{14}}} \right) \right] \\
& \text{B=}\left( 9\times {{10}^{-8}} \right)\hat{k}\text{ }\sin \left[ 2\pi \left( 0\cdot 666\times {{10}^{6}}x-2\times {{10}^{14}}t \right) \right] \\
\end{align} $ .
Note
$ E_o $ and $ B_o $ are the maximum magnitude of electric and magnetic fields in case of an electromagnetic wave.
Number of cycles of electric field or magnetic field completed in one second is called frequency of electromagnetic wave.
For mathematical representation, we define angular frequency by multiplying frequency with $ 2\pi $
$ w=2\pi v $
Time period of electromagnetic oscillation can be written as:
$ T=\dfrac{1}{v} $
Distance travelled by wave in one time period is called wavelength and is represented by $ \lambda $
$ \begin{align}
& \lambda =CT \\
& \lambda =\dfrac{C}{V} \\
\end{align} $ .
$ \text{B=Bo}\sin \left( kx-wt \right) $
In case of plane electromagnetic waves, direction of propagation is along the cross product $ \overrightarrow{E}\times \overrightarrow{B} $ . Hence, if direction of propagation is along x axis then $ \overrightarrow{E} $ is along y-axis and $ \overrightarrow{B} $ is along Z axis. From this, the direction of the magnetic field is found.
Complete step by step solution
We know that
$ \text{Bo}=\dfrac{\text{Eo}}{\text{c}} $
Now,
$ \text{Eo=27} $ …. Given
$ \text{c}=3\times {{10}^{8}} $
Hence
$ \text{Bo}=\dfrac{27}{3\times {{10}^{8}}}=9\times {{10}^{-8}} $
As the direction of propagation is along the x-axis, therefore $ \text{Bo} $ is along the z axis.
So $ \overrightarrow{\text{Bo}}=\left( 9\times {{10}^{-8}} \right)\hat{k} $
Now $ k=\dfrac{2\pi }{\lambda } $ and $ w=\dfrac{2\pi }{T} $
So putting these values in equation
$ \text{B=Bo }\sin \left( kx-wt \right) $
Now
$ \begin{align}
& \lambda =\dfrac{c}{v} \\
& =\dfrac{3\times {{10}^{8}}}{2\times {{10}^{14}}}=1\cdot 5\times {{10}^{-6}}m \\
\end{align} $
And
$ T=\dfrac{1}{v}=\dfrac{1}{2\times {{10}^{14}}}=0\cdot 5\times {{10}^{-14}}\text{ sec} $
Putting these values in equation (1), we get
$ \begin{align}
& \text{B}=\left( 9\times {{10}^{-8}} \right)\hat{k}\text{ sin}\left[ 2\pi \left( \dfrac{x}{1\cdot 5\times {{10}^{-6}}}-\dfrac{t}{0\cdot 5\times {{10}^{14}}} \right) \right] \\
& \text{B=}\left( 9\times {{10}^{-8}} \right)\hat{k}\text{ }\sin \left[ 2\pi \left( 0\cdot 666\times {{10}^{6}}x-2\times {{10}^{14}}t \right) \right] \\
\end{align} $ .
Note
$ E_o $ and $ B_o $ are the maximum magnitude of electric and magnetic fields in case of an electromagnetic wave.
Number of cycles of electric field or magnetic field completed in one second is called frequency of electromagnetic wave.
For mathematical representation, we define angular frequency by multiplying frequency with $ 2\pi $
$ w=2\pi v $
Time period of electromagnetic oscillation can be written as:
$ T=\dfrac{1}{v} $
Distance travelled by wave in one time period is called wavelength and is represented by $ \lambda $
$ \begin{align}
& \lambda =CT \\
& \lambda =\dfrac{C}{V} \\
\end{align} $ .
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

State and explain Coulombs law in electrostatics class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE
