Answer
Verified
378.9k+ views
Hint: First, the general equation of wave has to be known. Since the sinusoidal equation is given, the general equation should also be sinusoidal. The amplitude is the highest displacement of the wave that we can get from the general equation. Also, the period, phase shift, and vertical displacement are noted in that equation. The given equation has to be equated with the general one to find the values of required amplitude, period, phase, and vertical displacement.
Formula used:
The general equation: $y = a\sin (px - q) + r$
Where, $a = $ amplitude
$r = $ the vertical shift.
$\dfrac{{2\pi }}{p} = $ period.
$q = $ the phase shift.
Complete answer:
The given equation is, $y = \sin x - 1$
Clearly, it is a sinusoidal equation.
The general equation of wave is to take here, $y = a\sin (px - q) + r$
Where, $a = $ amplitude
$r = $ the vertical shift.
$\dfrac{{2\pi }}{p} = $ period.
$q = $ the phase shift.
If we write $y = \sin x - 1$ as $y = a\sin (px - q) + r$, it will be like:
$y = 1.\sin (1.x - 0) + ( - 1)$
By equating with the general equation we get from $y = 1.\sin (1.x - 0) + ( - 1)$,
$a = 1$, $p = 1$, $q = 0$ , $r = - 1$
Therefore, the amplitude $a = 1$
The period,$\dfrac{{2\pi }}{p} = \dfrac{{2\pi }}{1} = 2\pi $
The phase shift, $q = 0$
The vertical displacement, $r = - 1$
Note:
$y = \sin x - 1$ - This function is the same as $y = \sin x$ except it starts from $( - 1)$ rather than zero.
Also, the amplitude$\left( {a = 1} \right)$ is the same as that of the function $y = \sin x$ and the period$(2\pi )$ is similar to that of the function $y = \sin x$.
For the equation when there is $\sin x,\cos x,\sec x$ we take the period $2\pi $ and for the equation when there is $\tan x,\cot x$ we take the period $\pi $.
The phase shift we get here is, $q = 0$which means there is no shift in left or right.
The vertical displacement, $r = - 1$, which means the value of the function at $x = 0$.
Formula used:
The general equation: $y = a\sin (px - q) + r$
Where, $a = $ amplitude
$r = $ the vertical shift.
$\dfrac{{2\pi }}{p} = $ period.
$q = $ the phase shift.
Complete answer:
The given equation is, $y = \sin x - 1$
Clearly, it is a sinusoidal equation.
The general equation of wave is to take here, $y = a\sin (px - q) + r$
Where, $a = $ amplitude
$r = $ the vertical shift.
$\dfrac{{2\pi }}{p} = $ period.
$q = $ the phase shift.
If we write $y = \sin x - 1$ as $y = a\sin (px - q) + r$, it will be like:
$y = 1.\sin (1.x - 0) + ( - 1)$
By equating with the general equation we get from $y = 1.\sin (1.x - 0) + ( - 1)$,
$a = 1$, $p = 1$, $q = 0$ , $r = - 1$
Therefore, the amplitude $a = 1$
The period,$\dfrac{{2\pi }}{p} = \dfrac{{2\pi }}{1} = 2\pi $
The phase shift, $q = 0$
The vertical displacement, $r = - 1$
Note:
$y = \sin x - 1$ - This function is the same as $y = \sin x$ except it starts from $( - 1)$ rather than zero.
Also, the amplitude$\left( {a = 1} \right)$ is the same as that of the function $y = \sin x$ and the period$(2\pi )$ is similar to that of the function $y = \sin x$.
For the equation when there is $\sin x,\cos x,\sec x$ we take the period $2\pi $ and for the equation when there is $\tan x,\cot x$ we take the period $\pi $.
The phase shift we get here is, $q = 0$which means there is no shift in left or right.
The vertical displacement, $r = - 1$, which means the value of the function at $x = 0$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE