
ABCD is a parallelogram. The position vectors of A and C are respectively, $3\hat i + 3\hat j + 5\hat k$ and $\hat i - 5\hat j - 5\hat k$. If M is the mid-point of the diagonal DB, then the magnitude of the projection of OM on OC, where O is the origin is?
Answer
499.2k+ views
Hint: First, we need to find the midpoint of the diagonal DB, by considering the fact that both diagonals will have the same midpoint. OM and OC vectors will be with reference to the origin. Then we will obtain the projection of the vector by using the dot product of the vectors, further divided by the magnitude of OC vector.
Complete step-by-step answer:
In the question, position vectors of A and C are given as:
$3\hat i + 3\hat j + 5\hat k$ and $\hat i - 5\hat j - 5\hat k$.
As we know that, in any parallelogram the midpoints of both the diagonals are the same. Thus, given M as the midpoint of DB will imply that M will also be the midpoint of AC. Midpoint is the mean value of two vectors.
So,
\[
O\vec M = \dfrac{{O\vec A + O\vec C}}{2} \\
= \dfrac{{(3\hat i + 3\hat j + 5\hat k) + \hat i - 5\hat j - 5\hat k}}{2} \\
= 2\hat i - \hat j \\
\]
So, the position vector of M is $2\hat i - \hat j$.
Now, we will obtain the magnitude of projection of vector OM on vector C, by dividing the magnitude of the dot product of vector Om and vector OC by magnitude of vector OC.
Thus, Magnitude of the projection is,
\[
\dfrac{{\left| {O\vec M.O\vec C} \right|}}{{\left| {O\vec C} \right|}} \\
= \dfrac{{\left| {2 + 5} \right|}}{{\left| {\sqrt {1 + 25 + 25} } \right|}} \\
= \dfrac{7}{{\sqrt {51} }} \\
\]
In the above expression we found the magnitude of OC as $\sqrt {51} $(=\[\sqrt {1 + 25 + 25} \]). Also, for the projection, the angle between the vectors will be zero.
The magnitude of the projection will be $\dfrac{7}{{\sqrt {51} }}$.
Note: Dot product of the vectors is also termed as the inner product or scalar product. The vector projection of some vector b onto another vector a is in the same direction or in the opposite direction if the scalar projection is negative as of a. In another way, it is also termed as the component of b in the direction of a.
Complete step-by-step answer:
In the question, position vectors of A and C are given as:
$3\hat i + 3\hat j + 5\hat k$ and $\hat i - 5\hat j - 5\hat k$.
As we know that, in any parallelogram the midpoints of both the diagonals are the same. Thus, given M as the midpoint of DB will imply that M will also be the midpoint of AC. Midpoint is the mean value of two vectors.
So,
\[
O\vec M = \dfrac{{O\vec A + O\vec C}}{2} \\
= \dfrac{{(3\hat i + 3\hat j + 5\hat k) + \hat i - 5\hat j - 5\hat k}}{2} \\
= 2\hat i - \hat j \\
\]
So, the position vector of M is $2\hat i - \hat j$.
Now, we will obtain the magnitude of projection of vector OM on vector C, by dividing the magnitude of the dot product of vector Om and vector OC by magnitude of vector OC.
Thus, Magnitude of the projection is,
\[
\dfrac{{\left| {O\vec M.O\vec C} \right|}}{{\left| {O\vec C} \right|}} \\
= \dfrac{{\left| {2 + 5} \right|}}{{\left| {\sqrt {1 + 25 + 25} } \right|}} \\
= \dfrac{7}{{\sqrt {51} }} \\
\]
In the above expression we found the magnitude of OC as $\sqrt {51} $(=\[\sqrt {1 + 25 + 25} \]). Also, for the projection, the angle between the vectors will be zero.
The magnitude of the projection will be $\dfrac{7}{{\sqrt {51} }}$.
Note: Dot product of the vectors is also termed as the inner product or scalar product. The vector projection of some vector b onto another vector a is in the same direction or in the opposite direction if the scalar projection is negative as of a. In another way, it is also termed as the component of b in the direction of a.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

In northern hemisphere 21st March is called as A Vernal class 11 social science CBSE
