
A rigid ball of mass m strikes a rigid wall at ${60^ \circ }$ and gets reflected without loss of speed as shown in the figure. The value of impulse imparted by the wall on the ball will be:
(A) $mV$
(B) $2mV$
(C) $\dfrac{{mV}}{2}$
(D) $\dfrac{{mV}}{3}$
Answer
442.2k+ views
Hint: This question is related to the topics of work, energy, power and Impulse. Impulse is the integral of a force, F, over the time interval, t, for which it acts. Since force is a vector quantity, impulse is also a vector quantity. Impulse applied to an object produces an equivalent vector change in its linear momentum, also in the resultant direction.
Complete step by step answer:
Here, we are given that a rigid ball of mass m strikes a rigid wall at ${60^ \circ }$ and gets reflected without loss of speed. So, we need to calculate the impulse imparted by the wall on the ball.
Now, we know that impulse can also be defined as the change in momentum.
So, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
Initial momentum of the ball perpendicular to the wall,
${P_i} = m( - v\cos {60^ \circ })$
${P_i} = \dfrac{{ - mv}}{2}$
Similarly, Final momentum of the ball perpendicular to the wall,
${P_f} = m(v\cos {60^ \circ })$
${P_f} = \dfrac{{mv}}{2}$
Also, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
$I = \dfrac{{mv}}{2} - \left( {\dfrac{{ - mv}}{2}} \right)$
$I = \dfrac{{mv}}{2} + \dfrac{{mv}}{2}$
$I = mv$
$I = mv$
Therefore, The value of impulse imparted by the wall on the ball will be $mV$. So, option (A) is correct.
Note:
The impulse-momentum theorem states that the impulse applied to an object will be equal to the change in its momentum. In this theorem, we see that how a small force applied over a long period of time can be used to produce the small velocity change as a large force applied over a short period of time.
Complete step by step answer:
Here, we are given that a rigid ball of mass m strikes a rigid wall at ${60^ \circ }$ and gets reflected without loss of speed. So, we need to calculate the impulse imparted by the wall on the ball.
Now, we know that impulse can also be defined as the change in momentum.
So, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
Initial momentum of the ball perpendicular to the wall,
${P_i} = m( - v\cos {60^ \circ })$
${P_i} = \dfrac{{ - mv}}{2}$
Similarly, Final momentum of the ball perpendicular to the wall,
${P_f} = m(v\cos {60^ \circ })$
${P_f} = \dfrac{{mv}}{2}$
Also, impulse = final momentum – initial momentum
$I = {P_f} - {P_i}$
$I = \dfrac{{mv}}{2} - \left( {\dfrac{{ - mv}}{2}} \right)$
$I = \dfrac{{mv}}{2} + \dfrac{{mv}}{2}$
$I = mv$
$I = mv$
Therefore, The value of impulse imparted by the wall on the ball will be $mV$. So, option (A) is correct.
Note:
The impulse-momentum theorem states that the impulse applied to an object will be equal to the change in its momentum. In this theorem, we see that how a small force applied over a long period of time can be used to produce the small velocity change as a large force applied over a short period of time.
Recently Updated Pages
Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is the opposite of entropy class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
