Answer
Verified
468k+ views
Hint: Mechanical advantage is the ratio of load attached to the effort applied on the pulley. We can design a certain number of systems which provide us an advantage that we can lift an object by applying a force, lesser than the weight of the object itself. Hence mechanical advantage is the measure of how much one has to apply a force to lift a particular weight. Special arrangement of pulleys can help us in lifting the weights with less effort than directly lifting it.
Complete answer:
In the diagram, ‘E’ is the applied effort, ‘T’ is the tension in the light inextensible string and ‘L’ is the load attached to the movable pulley. Consider the situation at equilibrium. We can see that at equilibrium, net force in the string is zero. Now, we will write the equilibrium equations for different strings.
Hence Effort ‘E’ = T
And for movable pulley, L = T+T = 2T
Now, by the definition of mechanical advantage $M.E = \dfrac{load}{effort} = \dfrac{L}{E} = \dfrac{2T}{T} = 2$
Hence, in the system of one movable and one fixed pulley, mechanical advantage is 2.
So, the correct answer is “Option B”.
Note:
Here, we had considered that the pulley is light and frictionless and also the strings are light. Hence the mechanical advantage came out to be 2. But practically this is not the case. Hence the actual mechanical advantage is always less than two. However this phenomenon is very useful in factories where we have to lift huge weights very delicately. By attaching more movable pulleys, we can further increase the mechanical advantage of the system to any desired value.
Complete answer:
In the diagram, ‘E’ is the applied effort, ‘T’ is the tension in the light inextensible string and ‘L’ is the load attached to the movable pulley. Consider the situation at equilibrium. We can see that at equilibrium, net force in the string is zero. Now, we will write the equilibrium equations for different strings.
Hence Effort ‘E’ = T
And for movable pulley, L = T+T = 2T
Now, by the definition of mechanical advantage $M.E = \dfrac{load}{effort} = \dfrac{L}{E} = \dfrac{2T}{T} = 2$
Hence, in the system of one movable and one fixed pulley, mechanical advantage is 2.
So, the correct answer is “Option B”.
Note:
Here, we had considered that the pulley is light and frictionless and also the strings are light. Hence the mechanical advantage came out to be 2. But practically this is not the case. Hence the actual mechanical advantage is always less than two. However this phenomenon is very useful in factories where we have to lift huge weights very delicately. By attaching more movable pulleys, we can further increase the mechanical advantage of the system to any desired value.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light