Answer
Verified
450.6k+ views
Hint:-The potential energy is the energy which an object attains at a particular position in its motion. The force due to potential energy is the force required to move the object from the reference point to a position which is at a distance r from the reference point.
Formula used: The formula of the force exerted by a particle in conservative field having a potential energy is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle. Also$\hat i$,$\hat j$ and $\hat k$ are directions representing x-direction ,y-direction and z-direction.
Complete step-by-step solution
It is given that the potential energy of a particle is equal to $U = \dfrac{{20xy}}{z}$ and we have to find the force that is exerted on the particle.
As the force exerted on the particle is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle.
Therefore, the force is given by,
$ \Rightarrow F = - \nabla U$
Replace the value of potential energy in the above equation and the differentiating it partially.
$ \Rightarrow F = - \nabla \left( {\dfrac{{20xy}}{z}} \right)$
$ \Rightarrow F = - \left( {\dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k} \right) \cdot \left( {\dfrac{{20xy}}{z}} \right)$
After differentiating the potential energy we get,
$ \Rightarrow F = - \left( {\dfrac{{20y}}{z}\hat i + \dfrac{{20x}}{z}\hat j - \dfrac{{20xy}}{{{z^2}}}\hat k} \right)$
Solving furthermore we get,
$ \Rightarrow F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$.
The force applied on the particle is given by$F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$. The correct answer for this problem is option B.
Note:- It is important for students to differentiate the potential energy with respect to x, y and z with care as it is not a normal process of differentiation but this is the partial differentiation of the potential energy. The partial differential is done such that if a given term is differentiated with respect to x then every term except x is taken as constant.
Formula used: The formula of the force exerted by a particle in conservative field having a potential energy is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle. Also$\hat i$,$\hat j$ and $\hat k$ are directions representing x-direction ,y-direction and z-direction.
Complete step-by-step solution
It is given that the potential energy of a particle is equal to $U = \dfrac{{20xy}}{z}$ and we have to find the force that is exerted on the particle.
As the force exerted on the particle is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle.
Therefore, the force is given by,
$ \Rightarrow F = - \nabla U$
Replace the value of potential energy in the above equation and the differentiating it partially.
$ \Rightarrow F = - \nabla \left( {\dfrac{{20xy}}{z}} \right)$
$ \Rightarrow F = - \left( {\dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k} \right) \cdot \left( {\dfrac{{20xy}}{z}} \right)$
After differentiating the potential energy we get,
$ \Rightarrow F = - \left( {\dfrac{{20y}}{z}\hat i + \dfrac{{20x}}{z}\hat j - \dfrac{{20xy}}{{{z^2}}}\hat k} \right)$
Solving furthermore we get,
$ \Rightarrow F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$.
The force applied on the particle is given by$F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$. The correct answer for this problem is option B.
Note:- It is important for students to differentiate the potential energy with respect to x, y and z with care as it is not a normal process of differentiation but this is the partial differentiation of the potential energy. The partial differential is done such that if a given term is differentiated with respect to x then every term except x is taken as constant.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE