Answer
Verified
489.6k+ views
Hint: To solve this question, we need to use the basic theory of simple harmonic motion (SHM). First suppose, SHM is represented by x=A sin wt and then we directly use some basic formula so that we will get the answer.
Formula used- The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
Complete Step-by-Step solution:
As we know, in mechanics and physics, simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to, and opposite of, the object's displacement vector.
Now, in this case
We have, time = $\dfrac{{\text{T}}}{{\text{4}}}$
The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
That means, ${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{\text{4}}{{\text{d}}_{{\text{max}}}}}}{{\text{T}}}$
here T→2π
$\dfrac{{\text{T}}}{{\text{4}}}$$ \to $$\dfrac{{{\pi }}}{{\text{2}}}$
∴θ = $\dfrac{{{\pi }}}{{\text{4}}}$
∴ ${{\text{d}}_{{\text{max}}}}$=PQ=2Asinθ
= 2a ${\text{sin}}\left( {\dfrac{{{\pi }}}{{\text{4}}}} \right)$
∴ ${{\text{d}}_{{\text{max}}}}$= $\dfrac{{{\text{2A}}}}{{\sqrt {\text{2}} }}$ = $\sqrt {\text{2}} {\text{A}}$
Now, as we know:
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{\sqrt {\text{2}} {\text{A}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$
Therefore, a particle executes SHM with time period T and amplitude A. The maximum possible average velocity in time $\dfrac{{\text{T}}}{{\text{4}}}$ is $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$.
So, option (D) is the correct answer.
Note- An oscillation follows simple harmonic motion if it fulfils the following two rules: Acceleration is always in the opposite direction to the displacement from the equilibrium position. Acceleration is proportional to the displacement from the equilibrium position.
Formula used- The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
Complete Step-by-Step solution:
As we know, in mechanics and physics, simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to, and opposite of, the object's displacement vector.
Now, in this case
We have, time = $\dfrac{{\text{T}}}{{\text{4}}}$
The maximum possible average velocity = $\dfrac{{{\text{maximum displacement}}}}{{{\text{time}}}}$
That means, ${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{\text{4}}{{\text{d}}_{{\text{max}}}}}}{{\text{T}}}$
here T→2π
$\dfrac{{\text{T}}}{{\text{4}}}$$ \to $$\dfrac{{{\pi }}}{{\text{2}}}$
∴θ = $\dfrac{{{\pi }}}{{\text{4}}}$
∴ ${{\text{d}}_{{\text{max}}}}$=PQ=2Asinθ
= 2a ${\text{sin}}\left( {\dfrac{{{\pi }}}{{\text{4}}}} \right)$
∴ ${{\text{d}}_{{\text{max}}}}$= $\dfrac{{{\text{2A}}}}{{\sqrt {\text{2}} }}$ = $\sqrt {\text{2}} {\text{A}}$
Now, as we know:
${{\text{V}}_{{\text{avg}}}}$= $\dfrac{{{{\text{d}}_{{\text{max}}}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{\sqrt {\text{2}} {\text{A}}}}{{\dfrac{{\text{T}}}{{\text{4}}}}}$
= $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$
Therefore, a particle executes SHM with time period T and amplitude A. The maximum possible average velocity in time $\dfrac{{\text{T}}}{{\text{4}}}$ is $\dfrac{{{\text{4}}\sqrt {\text{2}} {\text{A}}}}{{\text{T}}}$.
So, option (D) is the correct answer.
Note- An oscillation follows simple harmonic motion if it fulfils the following two rules: Acceleration is always in the opposite direction to the displacement from the equilibrium position. Acceleration is proportional to the displacement from the equilibrium position.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Who was the founder of Anushilan Samiti A Satish Chandra class 10 social science CBSE
A particle executes SHM with time period T and amplitude class 10 physics CBSE
10 examples of evaporation in daily life with explanations
What is the full form of POSCO class 10 social science CBSE
Discuss why the colonial government in India brought class 10 social science CBSE
On the outline map of India mark the following appropriately class 10 social science. CBSE