Answer
Verified
462k+ views
Hint: Use the mass-energy relation to determine the energy difference between the two orbits for meson. Since the meson has 208 times the mass of the electron, the energy difference will also be 208 times that of the electron. Use a formula for wavenumber from Bohr’s model to determine wave number for meson.
Formula used:
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
Complete step by step answer:When an electron jumps from higher orbit \[{n_2}\] to lower orbit \[{n_1}\], the difference in the energy of the orbit is given by Bohr’s atomic model as,
\[\Delta E = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\] …… (1)
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
We know that the difference in the energy is given as,
\[\Delta E = \dfrac{{hc}}{\lambda }\]
Therefore, the energy difference is inversely proportional to the wavelength of the electron. Therefore, the equation (1) is written as,
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
The term \[\dfrac{1}{\lambda }\] is known as wave number.
According to the mass-energy relation, the difference in the energy is,
\[\Delta E = m{c^2}\]
Here, m is the mass of the particle and c is the speed of light.
We have given that the mass is 208 times the mass of the electron. Therefore, the energy difference will also be 208 times that of the electron. Therefore, we can write,
\[\dfrac{1}{\lambda } = 208{R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Substitute 4 for Z, 4 for \[{n_1}\] and \[\infty \] for \[{n_2}\] in the above equation.
\[\dfrac{1}{\lambda } = 208{R_H}{\left( 4 \right)^2}\left( {\dfrac{1}{{{4^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{\lambda } = 208{R_H}\]
We have given that the wave-number for electrons is \[\alpha {R_H}\]. Since the given meson also follows Bohr’s model, we can write,
\[\alpha {R_H} = 208{R_H}\]
\[ \Rightarrow \alpha = 208\]
Therefore,
\[\dfrac{\alpha }{{26}} = \dfrac{{208}}{{26}} = 8\]
Therefore, the value of \[\dfrac{\alpha }{{26}}\] is 8.
Note:Rydberg constant \[{R_H}\] consists of all the constants including mass of the electron m, charge e, speed of light c and Planck’s constant h. therefore, do not consider any other constants other than Z in the above formula. The mass-energy relation implies the energy possessed by the rest particle.
Formula used:
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
Complete step by step answer:When an electron jumps from higher orbit \[{n_2}\] to lower orbit \[{n_1}\], the difference in the energy of the orbit is given by Bohr’s atomic model as,
\[\Delta E = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\] …… (1)
Here, \[{R_H}\] is Rydberg’s constant and \[Z\] is atomic number.
We know that the difference in the energy is given as,
\[\Delta E = \dfrac{{hc}}{\lambda }\]
Therefore, the energy difference is inversely proportional to the wavelength of the electron. Therefore, the equation (1) is written as,
\[\dfrac{1}{\lambda } = {R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
The term \[\dfrac{1}{\lambda }\] is known as wave number.
According to the mass-energy relation, the difference in the energy is,
\[\Delta E = m{c^2}\]
Here, m is the mass of the particle and c is the speed of light.
We have given that the mass is 208 times the mass of the electron. Therefore, the energy difference will also be 208 times that of the electron. Therefore, we can write,
\[\dfrac{1}{\lambda } = 208{R_H}{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\]
Substitute 4 for Z, 4 for \[{n_1}\] and \[\infty \] for \[{n_2}\] in the above equation.
\[\dfrac{1}{\lambda } = 208{R_H}{\left( 4 \right)^2}\left( {\dfrac{1}{{{4^2}}} - \dfrac{1}{{{\infty ^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{\lambda } = 208{R_H}\]
We have given that the wave-number for electrons is \[\alpha {R_H}\]. Since the given meson also follows Bohr’s model, we can write,
\[\alpha {R_H} = 208{R_H}\]
\[ \Rightarrow \alpha = 208\]
Therefore,
\[\dfrac{\alpha }{{26}} = \dfrac{{208}}{{26}} = 8\]
Therefore, the value of \[\dfrac{\alpha }{{26}}\] is 8.
Note:Rydberg constant \[{R_H}\] consists of all the constants including mass of the electron m, charge e, speed of light c and Planck’s constant h. therefore, do not consider any other constants other than Z in the above formula. The mass-energy relation implies the energy possessed by the rest particle.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
What is composite fish culture What are the advantages class 12 biology CBSE
What is teminism class 12 biology CBSE