Answer
Verified
404.2k+ views
Hint: In this question, we need to determine the angular position and the angular acceleration of the rotating disc at 4 seconds. For this, we will follow the relation between the angular position, angular velocity, and the angular acceleration of the rotating body by differentiation and integration process.
Complete step by step answer:
The angular velocity of the disc rotating about the fixed axis has been given as $\omega = at + b$ where, $\omega $ is the angular velocity, ‘t’ is the time and ‘a’ and ‘b’ are the constants.
According to the question, at t=0, the angular velocity of the rotating disc is 1 radian per second. So, substitute \[t = 0{\text{ and }}\omega = 1{\text{ rad/sec}}\] in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 1 = a(0) + b \\
\therefore b = 1 - - - - (i) \\
$
Again, at t=2 seconds, the angular velocity of the rotating disc is 1 radian per second. So, substitute $t = 2{\text{ sec and }}\omega = 5{\text{ rad/sec}}$ in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 5 = a(2) + 1 \\
\Rightarrow 2a = 5 - 1 \\
\Rightarrow a = \dfrac{4}{2} \\
\therefore a = 2 - - - - (ii) \\
$
Substitute the values for the equations (i) and (ii) in the equation $\omega = at + b$ we get
$
\Rightarrow\omega = at + b \\
\Rightarrow\omega = 2t + 1 - - - - (iii) \\
$
The rate of change in the angular velocity of the rotating body results in the angular acceleration of the rotating body, Mathematically, $\dfrac{{d\omega }}{{dt}} = \alpha $ where, $\omega $ is the angular velocity and $\alpha $ is the angular acceleration.
So, differentiate the equation $\omega = 2t + 1$ with respect to time to determine the angular acceleration of the rotating disc.
$
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\dfrac{{d\omega }}{{dt}} = \dfrac{d}{{dt}}\left( {2t + 1} \right) \\
\Rightarrow\alpha = 2{\text{ rad/se}}{{\text{c}}^2} \\
$
Also, the integration of the angular velocity of the rotating disc results in the angular position of the rotating disc. Mathematically, $\int\limits_{{\theta _0}}^\theta {\omega dt} = \theta $.
So, integrate the equation $\omega = 2t + 1$ to determine the expression for the angular position of the rotating disc.
\[
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\int\limits_{{\theta _0}}^\theta {\omega dt} = \int\limits_0^t {\left( {2t + 1} \right)} dt \\
\Rightarrow \left[ \theta \right]_{{\theta _0}}^\theta = \left[ {{t^2} + t} \right]_0^t \\
\Rightarrow\theta - {\theta _0} = {t^2} + t - - - - (iv) \\
\]
It is given in the question that the initial angular position of the rotating disc is 2 radians, and we need to determine the angular position at t= 4 seconds. So, substitute \[{\theta _0} = 2{\text{ rad and }}t = 4{\text{ sec}}\] in the equation (iv), we get
\[
\Rightarrow\theta - {\theta _0} = {t^2} + t \\
\Rightarrow\theta - 2 = {(4)^2} + 4 \\
\Rightarrow\theta = 16 + 4 + 2 \\
\Rightarrow\theta= 22{\text{ rad}} \\
\]
Hence, the angular position and the angular acceleration of the rotating disc at 4 seconds are 22 radians and 2 radians per square seconds, respectively.
Note:It is interesting to note here that, the angular acceleration of the rotating disc is independent of the variable ‘t’, and so, we can say that the disc is rotating with the constant angular acceleration and is not changing with respect to time.
Complete step by step answer:
The angular velocity of the disc rotating about the fixed axis has been given as $\omega = at + b$ where, $\omega $ is the angular velocity, ‘t’ is the time and ‘a’ and ‘b’ are the constants.
According to the question, at t=0, the angular velocity of the rotating disc is 1 radian per second. So, substitute \[t = 0{\text{ and }}\omega = 1{\text{ rad/sec}}\] in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 1 = a(0) + b \\
\therefore b = 1 - - - - (i) \\
$
Again, at t=2 seconds, the angular velocity of the rotating disc is 1 radian per second. So, substitute $t = 2{\text{ sec and }}\omega = 5{\text{ rad/sec}}$ in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 5 = a(2) + 1 \\
\Rightarrow 2a = 5 - 1 \\
\Rightarrow a = \dfrac{4}{2} \\
\therefore a = 2 - - - - (ii) \\
$
Substitute the values for the equations (i) and (ii) in the equation $\omega = at + b$ we get
$
\Rightarrow\omega = at + b \\
\Rightarrow\omega = 2t + 1 - - - - (iii) \\
$
The rate of change in the angular velocity of the rotating body results in the angular acceleration of the rotating body, Mathematically, $\dfrac{{d\omega }}{{dt}} = \alpha $ where, $\omega $ is the angular velocity and $\alpha $ is the angular acceleration.
So, differentiate the equation $\omega = 2t + 1$ with respect to time to determine the angular acceleration of the rotating disc.
$
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\dfrac{{d\omega }}{{dt}} = \dfrac{d}{{dt}}\left( {2t + 1} \right) \\
\Rightarrow\alpha = 2{\text{ rad/se}}{{\text{c}}^2} \\
$
Also, the integration of the angular velocity of the rotating disc results in the angular position of the rotating disc. Mathematically, $\int\limits_{{\theta _0}}^\theta {\omega dt} = \theta $.
So, integrate the equation $\omega = 2t + 1$ to determine the expression for the angular position of the rotating disc.
\[
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\int\limits_{{\theta _0}}^\theta {\omega dt} = \int\limits_0^t {\left( {2t + 1} \right)} dt \\
\Rightarrow \left[ \theta \right]_{{\theta _0}}^\theta = \left[ {{t^2} + t} \right]_0^t \\
\Rightarrow\theta - {\theta _0} = {t^2} + t - - - - (iv) \\
\]
It is given in the question that the initial angular position of the rotating disc is 2 radians, and we need to determine the angular position at t= 4 seconds. So, substitute \[{\theta _0} = 2{\text{ rad and }}t = 4{\text{ sec}}\] in the equation (iv), we get
\[
\Rightarrow\theta - {\theta _0} = {t^2} + t \\
\Rightarrow\theta - 2 = {(4)^2} + 4 \\
\Rightarrow\theta = 16 + 4 + 2 \\
\Rightarrow\theta= 22{\text{ rad}} \\
\]
Hence, the angular position and the angular acceleration of the rotating disc at 4 seconds are 22 radians and 2 radians per square seconds, respectively.
Note:It is interesting to note here that, the angular acceleration of the rotating disc is independent of the variable ‘t’, and so, we can say that the disc is rotating with the constant angular acceleration and is not changing with respect to time.
Recently Updated Pages
Define atomic mass molecular mass and equivalent weight class 11 chemistry CBSE
Define and explain water potential class 11 biology CBSE
Define 1J of work class 11 chemistry CBSE
Define 1 newton class 11 physics CBSE
How do you decide whether the relation x2+y216 defines class 11 maths CBSE
Datura belongs to the family a Asteraceae b Solanaceae class 11 biology CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE