Answer
Verified
462.6k+ views
Hint: To solve this problem, first find the equivalent resistance across $3\Omega$ and $6\Omega$ resistors. Then, find the total resistance in the circuit. Substitute the total resistance and the voltage of the batter in the formula for Ohm’s law. This will give the current flowing through the circuit. Then, find the current passing through $6\Omega$ resistor. Now, using this obtained current across $6\Omega $ resistor, find the potential difference across $6\Omega$ resistor.
Complete answer:
Given: ${ R }_{ 1 }=3\Omega$
${ R }_{ 2 }=6\Omega$
${ R }_{ 1 }=3\Omega$
Voltage (V)= 5V
Resistors ${ R }_{ 1 }$ and ${ R }_{ 2 }$ are connected in parallel.
So, the equivalent resistance in the combination is given by,
$\dfrac { 1 }{ { R }_{ eq } } =\dfrac { 1 }{ { R }_{ 1 } } +\dfrac { 1 }{ { R }_{ 2 } }$
Substituting the values we get,
$\dfrac { 1 }{ { R }_{ eq } } =\dfrac { 1 }{ 3 } +\dfrac { 1 }{ 6 }$
$\Rightarrow \dfrac { 1 }{ { R }_{ eq } } =\dfrac { 9 }{ 18 }$
$\Rightarrow { R }_{ eq }=\dfrac { 18 }{ 9 }$
$\therefore {R}_{eq} = 2\Omega$
Therefore, the total resistance in the circuit is,
$R= {R}_{eq}+ {R}_{3}$
Substituting the values we get,
$R= 2 + 3$
$\Rightarrow R= 5\Omega$
Using Ohm’s Law,
$V=IR$
Substituting the values we get,
$5= I \times 5$
$\Rightarrow I =1A$
Current flowing through $6\Omega$ resistor is given by,
${ I }^{ ' }=\dfrac { { R }_{ 3 } }{ { R }_{ 3 }+{ R }_{ 2 } } I$
Substituting the values in above expression we get,
${ I }^{ ' }=\dfrac { 3 }{ 3+6 } \times 1$
$\Rightarrow { I }^{ ' }=\dfrac { 3 }{ 9 }$
$\Rightarrow { I }^{ ' }=\dfrac { 1 }{ 3 }$
Voltage across $6\Omega $ resistor is given by,
${ V }^{ ' }={ I }^{ ' }\times { R }_{ 2 }$
Substituting the values in above equation we get,
${ V }^{ ' }=\dfrac { 1 }{ 3 } \times 6$
$\therefore { V }^{ ' }= 2V$
Hence, the potential difference across the $6\Omega$ resistor is 2V.
So, the correct answer is “Option A”.
Note:
Students generally get confused between the formula for equivalent resistance in parallel combination and series combination & the equivalent capacitance in series and parallel combination. So, they should clearly know these formulas to solve these types of problems. Students should also remember that the equivalent resistance of a combination is always less than the smallest resistance in the parallel network.
Complete answer:
Given: ${ R }_{ 1 }=3\Omega$
${ R }_{ 2 }=6\Omega$
${ R }_{ 1 }=3\Omega$
Voltage (V)= 5V
Resistors ${ R }_{ 1 }$ and ${ R }_{ 2 }$ are connected in parallel.
So, the equivalent resistance in the combination is given by,
$\dfrac { 1 }{ { R }_{ eq } } =\dfrac { 1 }{ { R }_{ 1 } } +\dfrac { 1 }{ { R }_{ 2 } }$
Substituting the values we get,
$\dfrac { 1 }{ { R }_{ eq } } =\dfrac { 1 }{ 3 } +\dfrac { 1 }{ 6 }$
$\Rightarrow \dfrac { 1 }{ { R }_{ eq } } =\dfrac { 9 }{ 18 }$
$\Rightarrow { R }_{ eq }=\dfrac { 18 }{ 9 }$
$\therefore {R}_{eq} = 2\Omega$
Therefore, the total resistance in the circuit is,
$R= {R}_{eq}+ {R}_{3}$
Substituting the values we get,
$R= 2 + 3$
$\Rightarrow R= 5\Omega$
Using Ohm’s Law,
$V=IR$
Substituting the values we get,
$5= I \times 5$
$\Rightarrow I =1A$
Current flowing through $6\Omega$ resistor is given by,
${ I }^{ ' }=\dfrac { { R }_{ 3 } }{ { R }_{ 3 }+{ R }_{ 2 } } I$
Substituting the values in above expression we get,
${ I }^{ ' }=\dfrac { 3 }{ 3+6 } \times 1$
$\Rightarrow { I }^{ ' }=\dfrac { 3 }{ 9 }$
$\Rightarrow { I }^{ ' }=\dfrac { 1 }{ 3 }$
Voltage across $6\Omega $ resistor is given by,
${ V }^{ ' }={ I }^{ ' }\times { R }_{ 2 }$
Substituting the values in above equation we get,
${ V }^{ ' }=\dfrac { 1 }{ 3 } \times 6$
$\therefore { V }^{ ' }= 2V$
Hence, the potential difference across the $6\Omega$ resistor is 2V.
So, the correct answer is “Option A”.
Note:
Students generally get confused between the formula for equivalent resistance in parallel combination and series combination & the equivalent capacitance in series and parallel combination. So, they should clearly know these formulas to solve these types of problems. Students should also remember that the equivalent resistance of a combination is always less than the smallest resistance in the parallel network.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE