Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 5 Linear Inequalities - 2025-26

ffImage
banner

Maths Miscellaneous Exercise Class 11 Chapter 5 Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 5 Miscellaneous Exercise, you’ll dive deep into the world of complex numbers and quadratic equations. This chapter makes tricky topics like imaginary and complex numbers much easier to understand, helping you feel more confident about solving challenging sums. If you ever get confused between real and imaginary parts or how to convert forms, these solutions will clear things up step by step.

toc-symbolTable of Content
toggle-arrow

The NCERT Solutions on this page are prepared in a simple, detailed way to help you learn smarter and prepare better for your exams. You can also find a free downloadable PDF for easy study anytime! Need a quick view of what’s in store this year? Check the Class 11 Maths Syllabus for the latest chapter list and pattern.


Vedantu’s expert solutions not only solve your doubts but also help boost your problem-solving skills—especially important for board exams and future entrance tests. Practising with these solutions can make you much faster at answering exam questions!


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 11 Maths Chapter 13 Statistics

Miscellaneous Exercise

1. Solve the inequality $2 \leqslant 3x - 4 \leqslant 5$

Ans: $2 \leqslant 3x - 4 \leqslant 5$

$\Rightarrow 2 + 4 \leqslant 3x - 4 + 4 \leqslant 5 + 4$

$\Rightarrow 6 \leqslant 3x \leqslant 9$

$\Rightarrow 2 \leqslant x \leqslant 3$

As a result, the solutions of the following inequality are all real values higher than or equal to 2 but less than or equal to 3. For the given inequality, the solution set is [2,3].


2. Solve the inequality $6 \leqslant  - 3(2x - 4) < 12$

Ans: $6 \leqslant  - 3(2x - 4) < 12$

$\Rightarrow 2 \leqslant  - (2x - 4) < 4$

$\Rightarrow  - 2 \geqslant 2x - 4 >  - 4$

$\Rightarrow 4 - 2 \geqslant 2x > 4 - 4$

$\Rightarrow 2 \geqslant 2x > 0$

$\Rightarrow 1 \geqslant x > 0$

As a result, the set of solutions for the given inequality is [1 ,0 ).


3. Solve the inequality $ - 3 \leqslant 4 - \dfrac{{7x}}{2} \leqslant 18$

Ans: $ - 3 \leqslant 4 - \dfrac{{7x}}{2} \leqslant 18$

$\Rightarrow  - 3 - 4 \leqslant  - \dfrac{{7x}}{2} \leqslant 18 - 4$

$\Rightarrow  - 7 \leqslant  - \dfrac{{7x}}{2} \leqslant 14$

$\Rightarrow 7 \geqslant \dfrac{{7x}}{2} \geqslant  - 14$

$\Rightarrow 1 \geqslant \dfrac{x}{2} \geqslant  - 2$

$\Rightarrow 2 \geqslant x \geqslant  - 4$

As a result, the set of solutions for the given inequality is $[ - 4,2]$.


4. Solve the inequality $ - 15 < \dfrac{{3(x - 2)}}{5} \leqslant 0$

Ans: $ - 15 < \dfrac{{3(x - 2)}}{5} \leqslant 0$

$\Rightarrow  - 75 < 3(x - 2) \leqslant 0$

$\Rightarrow  - 25 < x - 2 \leqslant 0$

$\Rightarrow  - 25 + 2 < x \leqslant 2$

$\Rightarrow  - 23 < x \leqslant 2$

As a result, the set of solutions for the given inequality is (-23, 2]


5. Solve the inequality $ - 12 < 4 - \dfrac{{3x}}{{ - 5}} \leqslant 2$

Ans: \[ - 12 < 4 - \dfrac{{3x}}{{ - 5}} \leqslant 2\]

$\Rightarrow  - 12 - 4 < \dfrac{{ - 3x}}{{ - 5}} \leqslant 2 - 4$

$\Rightarrow  - 16 < \dfrac{{3x}}{5} \leqslant  - 2$

$\Rightarrow  - 80 < 3x \leqslant  - 10$

$\Rightarrow \dfrac{{ - 80}}{3} < x \leqslant \dfrac{{ - 10}}{3}$

As a result, the set of solutions for the given inequality is $\left( {\dfrac{{ - 80}}{3},\dfrac{{ - 10}}{3}} \right]$.


6. Solve the inequality $7 \leqslant \dfrac{{(3x + 11)}}{2} \leqslant 11$

Ans: $7 \leqslant \dfrac{{(3x + 11)}}{2} \leqslant 11$

$\Rightarrow 14 \leqslant 3x + 11 \leqslant 22$

$\Rightarrow 14 - 11 \leqslant 3x \leqslant 22 - 11$

$\Rightarrow 3 \leqslant 3x \leqslant 11$

$\Rightarrow 1 \leqslant x \leqslant \dfrac{{11}}{3}$

As a result, the set of solutions for the given inequality is $\left[ {1,\dfrac{{11}}{3}} \right]$.


7. Solve the inequalities and represent the solution graphically on number line:

$5x + 1 >  - 24,5x - 1 < 24$

Ans: $5x + 1 >  - 24 \Rightarrow 5x >  - 25$

$\Rightarrow x >  - 5 \ldots .(1)$

$5x - 1 < 24 \Rightarrow 5x < 25$

$\Rightarrow x < 5$

From (1) and ( 2 ), The solution set for the given system of inequalities can be deduced to be$( - 5,5)$. On a number line, the solution to the above system of inequalities can be expressed as


The solution set for the system of inequalities deduced to be(−5,5) on a number line


8. Solve the inequalities and represent the solution graphically on number line:

$2(x - 1) < x + 5,3(x + 2) > 2 - x$

Ans: $2(x - 1) < x + 5 \Rightarrow 2x - 2 < x + 5 \Rightarrow 2x - x < 5 + 2$

$\Rightarrow x < 7$

(1) $3(x + 2) > 2 - x \Rightarrow 3x + 6 > 2 - x \Rightarrow 3x + x > 2 - 6$

$\Rightarrow 4x >  - 4$

$\Rightarrow x >  - 1 \ldots  \ldots (2)$

From (1) and (2), The solution set for the given system of inequalities can be deduced to be $( - 1,7)$. On a number line, the solution to the above system of inequalities can be expressed as


The solution set for the system of inequalities deduced to be (−1,7) on a number line


9. Solve the following inequalities and represent the solution graphically on number line:

$3x - 7 > 2(x - 6),6 - x > 11 - 2x$

Ans: $3x - 7 > 2(x - 6) \Rightarrow 3x - 7 > 2x - 12 \Rightarrow 3x - 2x >  - 12 + 7$

$\Rightarrow x >  - 5 \ldots  \ldots  \ldots .(1)$

$ 6 - x > 11 - 2x \Rightarrow  - x + 2x > 11 - 6$

$\Rightarrow x > 5$

From (1) and (2), The solution set for the given system of inequalities can be deduced to be

$(5,\infty )$. On a number line, the solution to the above system of inequalities can be expressed as


The solution set for the system of inequalities deduced to be (5,∞) on a number line


10. Solve the inequalities and represent the solution graphically on number line:

$5(2x - 7) - 3(2x + 3) \leqslant 0,2x + 19 \leqslant 6x + 47$

Ans: $5(2x - 7) - 3(2x + 3) \leqslant 0 \Rightarrow 10x - 35 - 6x - 9 \leqslant 0 \Rightarrow 4x - 44 \leqslant 0 \Rightarrow 4x \leqslant 44$

$\Rightarrow x \leqslant 11$

$2x + 19 \leqslant 6x + 47 \Rightarrow 19 - 47 \leqslant 6x - 2x \Rightarrow  - 28 \leqslant 4x$

$\Rightarrow  - 7 \leqslant x$

From (1) and (2), The solution set for the given system of inequalities can be deduced to be $[ - 7,11]$. On a number line, the solution to the above system of inequalities can be expressed as


The solution set for the system of inequalities deduced to be (−7,11) on a number line


11. A solution is to be kept between ${68^\circ }{\text{F}}$ and ${77^\circ }{\text{F}}$. What is the range in temperature in degree Celsius (C) if the Celsius/Fahrenheit (F) conversion formula is given by $F = \dfrac{9}{5}C + 32?$

Ans: Because the solution must be preserved somewhere in the middle, ${68^\circ }{\text{F}}$ and ${77^\circ }{\text{F}},68 < F < 77$ Putting $F = \dfrac{9}{5}C + 32$, we obtain $68 < \dfrac{9}{5}C + 32 < 77$

$\Rightarrow 68 - 32 < \dfrac{9}{5}C < 77 - 32$

$\Rightarrow 36 < \dfrac{9}{5}C < 45$

$\Rightarrow 36 \times \dfrac{5}{9} < C < 45 \times \dfrac{5}{9}$

$\Rightarrow 20 < C < 25$

As a result, the required temperature range in degrees Celsius is between ${20^\circ }C$ and ${25^\circ }C$.


12. A solution of $8\% $ boric acid is to be diluted by adding a $2\% $ boric acid solution to it. The resulting mixture is to be more than $4\% $ but less than $6\% $ boric acid. If we have 640 litres of the $8\% $ solution, how many litres of the $2\% $ solution will have to be added?

Ans: Let $2\% $ of $x$ litres of boric acid solution is required to be added. Then, total mixture $ = (x + 640)$ litres.

This resulting mixture is to be more than $4\% $ but less than $6\% $ boric acid. 

$\therefore \quad 2 \%$ of $x+8 \%$ of $640>4 \%$ of $(x+640)$

And, $2 \%$ of $x+8 \%$ of $640<6 \%$ of $(x+640)$`

$\Rightarrow 2x + 5120 > 4x + 2560$

$\Rightarrow 5120 - 2560 > 4x - 2x$

$\Rightarrow 5120 - 2560 > 2x$

$\Rightarrow 2560 > 2x$

$\Rightarrow 1280 > x$

$2\% x + 8\% $ of $640 < 6\% $ of $(x + 640)$ $\dfrac{2}{{100}}x + \dfrac{8}{{100}}(640) < \dfrac{6}{{100}}(x + 640)$

$\Rightarrow 2x + 5120 < 6x + 3840$

$\Rightarrow 5120 - 3840 < 6x - 2x$

$\Rightarrow 5120 - 3840 < 6x - 2x$

$\Rightarrow 1280 < 4x$

$\Rightarrow 320 < x$

$\therefore 320 < x < 1280$

As a result, the total amount of boric acid solution to be added must be greater than 320 litres but less than 1280 litres.


13. How many litres of water will have to be added to 1125 litres of the $45\% $ solution of acid so that the resulting mixture will contain more than $25\% $ but less than $30\% $ acid content?

Ans: Allow for the addition of x litres of water. The entire mixture is then calculated $ = (x + 1125)$litres It is clear that the amount of acid in the final mixture is excessive. $45\% $ of 1125 litres. The resulting mixture will have a higher concentration of $25\% $ but less than $30\% $ acid content.

$\therefore 30\% $ of $(1125 + x) > 45\% $ of 1125

And, $25\% $ of $(1125 + x) < 45\% $ of 1125 

$\Rightarrow \dfrac{{30}}{{100}}(1125 + x) > \dfrac{{45}}{{100}} \times 1125$

$\Rightarrow 30(1125 + x) > 45 \times 1125$

$\Rightarrow 30 \times 1125 + 30x > 45 \times 1125$

$\Rightarrow 30 > 45 \times 1125 - 30 \times 1125$

$\Rightarrow 30x > (45 - 30) \times 1125$

$\Rightarrow x > \dfrac{{15 \times 1125}}{{30}} = 562.5$

$25\% $ of $(1125 + x) < 45\% $ of 1125 $\Rightarrow \dfrac{{25}}{{100}}(1125 + x) < \dfrac{{45}}{{100}} \times 1125$

$\Rightarrow 25(1125 + x) > 45 \times 1125$

$\Rightarrow 25 \times 1125 + 25x > 45 \times 1125$

$\Rightarrow 25x > 45 \times 1125 - 25 \times 1125$

$\Rightarrow 25x > (45 - 25) \times 1125$

$\Rightarrow x > \dfrac{{20 \times 1125}}{{25}} = 900$

$\therefore 562.5 < x < 900$

As a result, the required number of litres of water must be greater than 562.5 but less than 900.


14. IQ of a person is given by the formula $IQ = \dfrac{{MA}}{{CA}} \times 100$, Where MA is mental age and CA is chronological age. If $80 \leqslant 1Q \leqslant 140$ for a group of 12 years old children, find the range of their mental age.

Ans: It is reported that for a group of twelve-year-olds $80 \leqslant IQ \leqslant 140 \ldots  \ldots (i)$

For a group of 12 years old children, ${\text{CA}} = 12$ years ${\text{IQ}} = \dfrac{{{\text{MA}}}}{{12}} \times 100$

Putting this value of IQ in (i), we obtain $80 \leqslant \dfrac{{{\text{MA}}}}{{12}} \times 100 \leqslant 140$

$\Rightarrow 80 \times \dfrac{{12}}{{100}} \leqslant {\text{MA}} \leqslant 140 \times \dfrac{{12}}{{100}}$

$\Rightarrow 9.6 \leqslant {\text{MA}} \leqslant 16.8$

As a result, the mental age range of the 12-year-olds has widened.$\Rightarrow 9.6 \leqslant {\text{MA}} \leqslant 16.8$.


Conclusion

NCERT Miscellaneous Exercise in Chapter 5 of Class 11 Maths helps you practice and understand linear inequalities better. These solutions have been developed by Vedantu's experienced teachers to simplify and make learning clear. Solving and representing these problems can help you become more skilled in solving inequality problems. It is important to practise this to absorb the material completely and perform well on examinations.

 

Class 11 Maths Chapter 5: Exercises Breakdown

Exercise

Number of Questions

Exercise 5.1

26 Questions & Solutions


CBSE Class 11 Maths Chapter 5 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 5 Linear Inequalities - 2025-26

1. Where can I find reliable, step-by-step NCERT Solutions for Class 11 Maths Chapter 5 for the 2025-26 session?

You can find detailed, expert-verified NCERT Solutions for Class 11 Maths Chapter 5, Linear Inequalities, on Vedantu. These solutions are fully compliant with the latest CBSE 2025-26 syllabus and provide a step-by-step methodology for solving every question in the NCERT textbook accurately.

2. What is the correct method for solving a linear inequality in one variable as per the NCERT textbook?

To solve a linear inequality in one variable according to the NCERT method, you should follow these steps:

  • Group all terms with the variable on one side and constant terms on the other side of the inequality.
  • Simplify both sides to isolate the variable.
  • Crucially, you must reverse the inequality sign whenever you multiply or divide both sides by a negative number.
  • Finally, represent the solution set on a number line if the question requires it.

3. How do you correctly solve a system of linear inequalities graphically as shown in the NCERT solutions?

The correct graphical method for solving a system of linear inequalities involves these steps:

  • Convert each inequality into an equation to plot its boundary line on a graph.
  • Draw a solid line for inequalities involving ≤ or ≥ and a dotted line for inequalities with < or >.
  • Select a test point (like the origin (0,0), if it's not on the line) to find the correct solution region for each inequality.
  • Shade the respective solution region for each line.
  • The common overlapping area, known as the feasible region, is the final solution to the system.

4. Why is using a 'test point' a critical step when finding the solution region for a graphical inequality problem?

Using a test point is critical because a line divides the plane into two distinct half-planes. The test point allows you to algebraically verify which of these regions satisfies the inequality. If substituting the point's coordinates (e.g., (0,0)) into the inequality results in a true statement, the entire half-plane containing that point is the solution region. This eliminates guesswork and ensures your final shaded area is mathematically correct, which is a key part of the NCERT problem-solving method.

5. What kinds of problems are covered in the NCERT Solutions for the Miscellaneous Exercise of Chapter 5?

The NCERT Solutions for the Miscellaneous Exercise of Chapter 5 address a variety of advanced problems designed to test comprehensive understanding. This includes solving complex inequalities, graphical representation of systems of inequalities, and, most importantly, challenging word problems that require you to formulate a system of linear inequalities from a real-world scenario before solving it.

6. What is a common mistake students make when solving word problems from Chapter 5, and how do the NCERT solutions help prevent it?

A very common mistake is incorrectly translating verbal constraints into mathematical symbols. For instance, students often confuse 'at least' (which means ) with 'more than' (which means >). The NCERT Solutions on Vedantu help by meticulously breaking down each word problem. They show the precise translation of each phrase into its corresponding inequality, reinforcing the correct logic before proceeding with the step-by-step solution.

7. How do the NCERT Solutions explain the difference between a bounded and an unbounded solution region?

The NCERT Solutions explain this difference visually through the graphs. A bounded solution region is a finite area that can be fully enclosed within a circle, often forming a closed polygon like a triangle or quadrilateral. In contrast, an unbounded solution region extends infinitely in at least one direction and cannot be contained. The solutions clearly illustrate this by shading the feasible region and explicitly stating whether it is bounded or unbounded based on its graphical representation.

8. How can Vedantu’s NCERT Solutions for Chapter 5 improve my ability to solve graphical problems?

Vedantu’s NCERT Solutions for Chapter 5 improve your graphical problem-solving skills by providing clear, annotated diagrams for every relevant question. The step-by-step instructions clarify not just the final answer but the process itself, explaining how to plot lines, the reasoning for using solid vs. dotted lines, and the method for accurately shading the feasible region. Following these detailed examples helps build both skill and confidence for exams.