Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

ffImage
banner
widget title icon
Latest Updates

Introduction To Three Dimensional Geometry - Exercise-wise Questions and Answers For Class 11 Maths - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry, you’ll dive into the world of space and coordinates! This chapter teaches you how to find points and distances in 3D, understand octants, use formulas easily, and even spot if points line up or form shapes like triangles and parallelograms. If you’re ever stuck on how to break down a tricky geometry question, Vedantu’s stepwise NCERT Solutions are here to make it all clearer.


You’ll find solved examples, easy-to-understand steps, and practice exercises matching the latest CBSE pattern. With detailed solutions in a free downloadable PDF, you can practice at your own pace and get your doubts cleared quickly. Plus, you can check out the CBSE Class 11 Maths syllabus or browse more NCERT Solutions for Class 11 Maths anytime.


Learning three dimensional geometry helps you solve real-life problems, boosts your exam confidence, and builds a strong maths foundation for future topics.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Exercises under NCERT Class 11 Maths Chapter 11 – Introduction to Three-Dimensional Geometry

Exercise 11.1: This exercise introduces the concept of three-dimensional space and the coordinate system used to represent points in three dimensions. Students will learn about the distance formula in three-dimensional space and how to find the coordinates of a point dividing a line segment in a given ratio.

Exercise 11.2: In this exercise, students will learn about the direction ratios of a line, the angle between two lines, and the equation of a plane in different forms. They will also practice finding the distance between a point and a plane.

Exercise 11.3: This exercise focuses on the concept of the angle between two planes and the shortest distance between two skew lines. Students will learn how to find the angle between two planes and the shortest distance between two skew lines.

Miscellaneous Exercise: This exercise includes a mix of questions covering all the concepts taught in the chapter. Students will have to apply their knowledge of three-dimensional geometry to solve various problems and answer questions. They will also practice finding the direction ratios of a line, the equation of a plane, the angle between two lines, and the distance between a point and a plane.


Access NCERT Solutions for Class 11 Maths Chapter 11 - Introduction to Three-Dimensional Geometry

Exercise 11.1

1. A point is on the $\mathbf{x}$- axis. What are its $\mathbf{y}$-coordinate and $\mathbf{z}$ -coordinates?

Ans: When a point is on the $x$-axis, then the $y$-coordinate and $z$-coordinate of that point are both zero.

2. A point is in the $\mathbf{xz}$-plane. What can you say about its $\mathbf{y}$-coordinate?

Ans: When a point is on the $xz$-plane, then $y$-coordinate of that point is zero.

3. Name the octant in which the following points lie:

$\left( \mathbf{1,2,3} \right)\mathbf{,}\left( \mathbf{4,-2,3} \right)\mathbf{,}\left( \mathbf{4,-2,-5} \right)\mathbf{,}\left( \mathbf{4,2,-5} \right)$, $\left( -\mathbf{4},\mathbf{2},-\mathbf{5} \right),\left( -\mathbf{4},\mathbf{2},\mathbf{5} \right),$ $\left( -\mathbf{3},-\mathbf{1},\mathbf{6} \right),$$\left( -\mathbf{2},-\mathbf{4},-\mathbf{7} \right)$.

Ans: Consider the following table.

Octants

$I$

$II$

$III$

$IV$

$V$

$VI$

$VII$

$VIII$

$x$

$+$

$-$

$-$

$+$

$+$

$-$

$-$

$+$

$y$

$+$

$+$

$-$

$-$

$+$

$+$

$-$

$-$

$z$

$+$

$+$

$+$

$+$

$-$

$-$

$-$

$-$


By following rules given in the above table, we can conclude the following results.

Since, all the three coordinates in the point $\left( 1,2,3 \right)$ are positive, so this point is in the octant $I$.

Since in the point $\left( 4,-2,3 \right)$, the $x$ and $z$-coordinate are positive and the $y$-coordinate is negative, so this point is in the octant $IV$.

Since in the point $\left( 4,-2,-5 \right)$, the $y$ and $z$-coordinate are negative and the $x$-coordinate is positive, so this point is in the octant $VIII$.

Since in the point $\left( 4,2,-5 \right)$, the $x$ and $y$-coordinate are positive and the $z$-coordinate is negative, so this point is in the octant $V$.

Since in the point $\left( -4,2,-5 \right)$, the $x$ and $z$-coordinate are negative and the $y$-coordinate is positive, so this point is in the octant $VI$.

Since in the point $\left( -3,-1,6 \right)$, the $x$ and $y$-coordinate are negative and the $z$-coordinate is positive, so this point is in the octant $II$.

Since in the point $\left( -2,-4,-7 \right)$, all the three coordinates in the point are negative, so this point is in the octant $VII$.

4. Fill in the following blanks:

(i) The $\mathbf{x}$-axis and $\mathbf{y}$-axis taken together determine a plane known as ________.

Ans: The $x$-axis and $y$-axis taken together determine a plane known as $XY$ plane.

(ii) The coordinates of points in the $\mathbf{XY}$-plane are of the form __________.

Ans: The coordinates of points in the  $XY$-plane are of the form $\left( x,y,0 \right)$.

(iii) Coordinate planes divided the space into ________ octants.

Ans: Coordinate planes divided the space into eight octants.

Exercise 11.2

1. Find the distance between the following pairs of points:

(i) $\left( \mathbf{2,3,5} \right)$ and $\left( \mathbf{4,3,1} \right)$.

Ans: Recall that, distance between any two points $P\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and \[Q\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] is $PQ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$

Therefore, distance between the points $\left( 2,3,5 \right)$ and $\left( 4,3,1 \right)$ is 

$  =\sqrt{{{\left( 4-2 \right)}^{2}}+{{\left( 3-3 \right)}^{2}}+{{\left( 1-5 \right)}^{2}}}$

$ =\sqrt{{{2}^{2}}+{{0}^{2}}+{{\left( -4 \right)}^{2}}} $

$ =\sqrt{4+16} $

$ =\sqrt{20} $

$=2\sqrt{5}$ units.

(ii) $\left( \mathbf{-3,7,2} \right)$ and $\left( \mathbf{2,4,-1} \right)$.

Ans: The distance between the points $\left( -3,7,2 \right)$ and $\left( 2,4,-1 \right)$ is

$ =\sqrt{{{\left( 2+3 \right)}^{2}}+{{\left( 4-7 \right)}^{2}}+{{\left( -1-2 \right)}^{2}}} $

$ =\sqrt{{{5}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( -3 \right)}^{2}}} $

$ =\sqrt{25+9+9} $ 

$=\sqrt{43}$ units

(iii) $\left( -\mathbf{1},\mathbf{3},-\mathbf{4} \right)$ and $\left( \mathbf{1},-\mathbf{3},\mathbf{4} \right)$.

Ans:  The distance between the points $\left( -1,3,-4 \right)$ and $\left( 1,-3,4 \right)$ is

$=\sqrt{{{\left( 1+1 \right)}^{2}}+{{\left( -3-3 \right)}^{2}}+{{\left( 4+4 \right)}^{2}}} $

$ =\sqrt{{{2}^{2}}+{{\left( -6 \right)}^{2}}+{{8}^{2}}} $ 

$ =\sqrt{4+36+64} $

$ =\sqrt{104} $ 

$=2\sqrt{26}$ units

(iv) $\left( \mathbf{2},-\mathbf{1},\mathbf{3} \right)$ and $\left( \mathbf{-2,1,3} \right)$.

Ans: The distance between the points $\left( 2,-1,3 \right)$ and $\left( -2,1,3 \right)$ is

$=\sqrt{{{\left( -2-2 \right)}^{2}}+{{\left( 1+1 \right)}^{2}}+{{\left( 3-3 \right)}^{2}}} $

$ =\sqrt{{{\left( -4 \right)}^{2}}+{{2}^{2}}+{{0}^{2}}} $

$ =\sqrt{16+4}$

$ =\sqrt{20}$

$=2\sqrt{5}$ units

2. Show that the points $\left( \mathbf{-2,3,5} \right),\left( \mathbf{1},\mathbf{2},\mathbf{3} \right)$ and $\left( \mathbf{7},\mathbf{0},-\mathbf{1} \right)$ are collinear.

Ans: Recall that, any points $P$, $Q$, $R$ are said to be collinear if they lie on a line.

Now, suppose that the given points are $P\left( -2,3,5 \right)$, $Q\left( 1,2,3 \right)$, and $R\left( 7,0,-1 \right)$.

Then, $PQ=\sqrt{{{\left( 1+2 \right)}^{2}}+{{\left( 2-3 \right)}^{2}}+{{\left( 3-5 \right)}^{2}}}$

$ =\sqrt{{{3}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( -2 \right)}^{2}}} $

$ =\sqrt{9+1+4} $

$=\sqrt{14}$ units

$QR=\sqrt{{{\left( 7-1 \right)}^{2}}+{{\left( 0-2 \right)}^{2}}+{{\left( -1-3 \right)}^{2}}}$

$=\sqrt{{{6}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}} $ 

$ =\sqrt{36+4+16} $

$ =\sqrt{56} $

$=2\sqrt{14}$ units

Also, $PR=\sqrt{{{\left( 7+2 \right)}^{2}}+{{\left( 0-3 \right)}^{2}}+{{\left( -1-5 \right)}^{2}}}$

$=\sqrt{{{9}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( -6 \right)}^{2}}} $ 

$ =\sqrt{81+9+36} $ 

$=\sqrt{126}$

$=3\sqrt{14}$ units.

Notice that, $PQ+QR=\sqrt{14}+2\sqrt{14}=3\sqrt{14}=PR$.

Thus, the points lie in the same line.

Hence, the given points are collinear.

3. Verify the following statements:

(i) $\left( \mathbf{0,7,-10} \right)\mathbf{,}\left( \mathbf{1,6,-6} \right)$ and $\left( \mathbf{4},\mathbf{9},-\mathbf{6} \right)$ are the vertices of an isosceles triangle.

Ans: Recall that, in an isosceles triangle any two sides are of equal length.

Now, let the given points are $P\left( 0,7,-10 \right)$, $Q\left( 1,6,-6 \right)$ and $R\left( 4,9,-6 \right)$.

Then, $PQ=\sqrt{{{\left( 1-0 \right)}^{2}}+{{\left( 6-7 \right)}^{2}}+{{\left( -6+10 \right)}^{2}}}$

$=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{4}^{2}}}$

$=\sqrt{1+1+16}$ 

$ =\sqrt{18} $

$=3\sqrt{2}$ units.

$QR=\sqrt{{{\left( 4-1 \right)}^{2}}+{{\left( 9-6 \right)}^{2}}+{{\left( -6+6 \right)}^{2}}}$

$ =\sqrt{{{3}^{2}}+{{3}^{2}}+{{0}^{2}}}$

$ =\sqrt{9+9}$ 

$ =\sqrt{18}$ 

$=3\sqrt{2}$ units

Also, $RP=\sqrt{{{\left( 0-4 \right)}^{2}}+{{\left( 7-9 \right)}^{2}}+{{\left( -10+6 \right)}^{2}}}$

$ =\sqrt{{{\left( -4 \right)}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}} $

$=\sqrt{16+4+16} $

$=\sqrt{36}$

$=6$ units.

Note that, $PQ=QR\ne RP$

Hence, the provided points are the vertices of an isosceles triangle.

(ii) $\left( \mathbf{0},\mathbf{7},\mathbf{10} \right),\left( -\mathbf{1},\mathbf{6},\mathbf{6} \right)$ and $\left( -\mathbf{4},\mathbf{9},\mathbf{6} \right)$ are the vertices of a right-angled triangle.

Ans: Recall that, according to the Pythagorean theorem, a triangle is said to be a right-angled if the sum of the squares of two sides equal to the square of the third side.

Now, let the given points are $P\left( 0,7,-10 \right)$, $Q\left( 1,6,-6 \right)$ and $R\left( 4,9,-6 \right)$.

Then, $PQ=\sqrt{{{\left( 1-0 \right)}^{2}}+{{\left( 6-7 \right)}^{2}}+{{\left( -6+10 \right)}^{2}}}$

$=\sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{4}^{2}}}$

$=\sqrt{1+1+16}$ 

$ =\sqrt{18}$ 

$=3\sqrt{2}$ units.

$ QR=\sqrt{{{\left( 4-1 \right)}^{2}}+{{\left( 9-6 \right)}^{2}}+{{\left( -6+6 \right)}^{2}}}$ 

$ =\sqrt{{{3}^{2}}+{{3}^{2}}+{{0}^{2}}} $ 

$ =\sqrt{9+9} $ 

$ =\sqrt{18} $ 

$=3\sqrt{2}$ units

Also, $RP=\sqrt{{{\left( 0-4 \right)}^{2}}+{{\left( 7-9 \right)}^{2}}+{{\left( -10+6 \right)}^{2}}}$

$=\sqrt{{{\left( -4 \right)}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}}$

$ =\sqrt{16+4+16}$ 

$=\sqrt{36}$

$=6$ units.

Now, note that,

$ P{{Q}^{2}}+Q{{R}^{2}}={{\left( 3\sqrt{2} \right)}^{2}}+{{\left( 3\sqrt{2} \right)}^{2}}$

$ =18+18$ 

$ =36 $ 

$ ={{\left( RP \right)}^{2}}$

That is, $P{{Q}^{2}}+Q{{R}^{2}}=R{{P}^{2}}$.

Hence, according to the Pythagorean theorem, the given points form a right-angled triangle.

(iii) $\left( -\mathbf{1},\mathbf{2},\mathbf{1} \right),\left( \mathbf{1},-\mathbf{2},\mathbf{5} \right),\left( \mathbf{4},-\mathbf{7},\mathbf{8} \right)$ and $\left( \mathbf{2},-\mathbf{3},\mathbf{4} \right)$ are the vertices of a parallelogram.

Ans: Recall that, a quadrilateral is said to be a parallelogram if the opposite sides are equal.

Now, suppose that, the given points are $P\left( -1,2,1 \right)$, $Q\left( 1,-2,5 \right)$, $R\left( 4,-7,8 \right)$, and $S\left( 2,-3,4 \right)$.

Then, $PQ=\sqrt{{{\left( 1+1 \right)}^{2}}+{{\left( -2-2 \right)}^{2}}+{{\left( 5-1 \right)}^{2}}}$

$=\sqrt{{{2}^{2}}+{{\left( -4 \right)}^{2}}+{{4}^{2}}}$ 

$ =\sqrt{4+16+16}$

$=\sqrt{36}$

$=6$ units.

$QR=\sqrt{{{\left( 4-1 \right)}^{2}}+{{\left( -7+2 \right)}^{2}}+{{\left( 8-5 \right)}^{2}}}$

$=\sqrt{{{3}^{2}}+{{\left( -5 \right)}^{2}}+{{3}^{2}}}$ 

$ =\sqrt{9+25+9}$ 

$=\sqrt{43}$ units

$RS=\sqrt{{{\left( 2-4 \right)}^{2}}+{{\left( -3+7 \right)}^{2}}+{{\left( 4-8 \right)}^{2}}}$

$ =\sqrt{{{\left( -2 \right)}^{2}}+{{4}^{2}}+{{\left( -4 \right)}^{2}}} $ 

$ =\sqrt{4+16+16} $ 

$=\sqrt{36}$

$=6$ units

Also, $SP=\sqrt{{{\left( -1-2 \right)}^{2}}+{{\left( 2+3 \right)}^{2}}+{{\left( 1-4 \right)}^{2}}}$

$ =\sqrt{{{\left( -3 \right)}^{2}}+{{5}^{2}}+{{\left( -3 \right)}^{2}}}$

$ =\sqrt{9+25+9}$ 

$=\sqrt{43}$ units.

Therefore, we have

$PQ=RS=6$ units and $QR=SP=\sqrt{43}$ units.

Thus, in the quadrilateral $PQRS$, the opposite sides are equal.

Hence, $PQRS$ is a parallelogram, that is, the provided points are the vertices of a parallelogram.

4. Find the equation of the set of points which are equidistant from the points $\left( \mathbf{1},\mathbf{2},\mathbf{3} \right)$ and $\left( \mathbf{3},\mathbf{2},-\mathbf{1} \right)$.

Ans: Suppose that, the points $A\left( 1,2,3 \right)$ and $B\left( 3,2,-1 \right)$ are equidistant from the point $P\left( x,y,z \right)$.

Then, we have, $AP=BP$

$\Rightarrow A{{P}^{2}}=B{{P}^{2}}$

$\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}={{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}$

$\Rightarrow{{x}^{2}}-2x+1+{{y}^{2}}-4y+4+{{z}^{2}}-6z+9={{x}^{2}}-6x+9+{{y}^{2}}-4y+4+{{z}^{2}}+2z+1 $ 

$ \Rightarrow -2x-4y-6z+14=-6x-4y+2z+14$ 

$ \Rightarrow -2x-6z+6x-2z=0$

$ \Rightarrow 4x-8z=0$

$\Rightarrow x-2z=0$

Hence, the equation of the set of points that are equidistant from the given points is given by

$x-2z=0$.

5. Find the equation of the set of points $\mathbf{P}$, the sum of whose distances from $\mathbf{A}\left( \mathbf{4},\mathbf{0},\mathbf{0} \right)$ and $\mathbf{B}\left( -\mathbf{4},\mathbf{0},\mathbf{0} \right)$ is equal to $\mathbf{10}$.

Ans: Suppose that, the points $A\left( 4,0,0 \right)$ and $B\left( -4,0,0 \right)$ are equidistant from the point $P\left( x,y,z \right)$.

Then, by the given condition, we have

$AP+BP=10$

$\Rightarrow \sqrt{{{\left( x-4 \right)}^{2}}+{{\left( y-0 \right)}^{2}}+{{\left( z-0 \right)}^{2}}}+\sqrt{{{\left( x+4 \right)}^{2}}+{{\left( y-0 \right)}^{2}}+{{\left( z-0 \right)}^{2}}}=10$

$\Rightarrow \sqrt{{{\left( x-4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}=10-\sqrt{{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}$

Squaring both sides of the equation, yields

${{\left( x-4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=100-20\sqrt{{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}+{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}$

$\Rightarrow {{\left( x-4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=100-20\sqrt{{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}}+{{x}^{2}}+8x+16+{{y}^{2}}+{{z}^{2}}$

$\Rightarrow 20\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+8x+16}=100+16x$

$ \Rightarrow 5\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+8x+16}=25+4x$

Again, squaring both sides of the equation, gives

$25\left( {{x}^{2}}+8x+16+{{y}^{2}}+{{z}^{2}} \right)=625+16{{x}^{2}}+200x$

$\Rightarrow 25{{x}^{2}}+200x+400+25{{y}^{2}}+25{{z}^{2}}=625+16{{x}^{2}}+200x$

$\Rightarrow 9{{x}^{2}}+25{{y}^{2}}+25{{z}^{2}}-225=0$

Hence, the equation of the set of points, the sum of whose distances from the given points is equal to $10$, is given by

$9{{x}^{2}}+25{{y}^{2}}+25{{z}^{2}}-225=0$.

Exercise 11.3

1. Find the coordinates of the point which divides the line segment joining the points $\left( \text{-2,3,5} \right)$ and $\left( \text{1,-4,6} \right)$ in the ratio

(i) $\text{2:3}$ internally,

Ans: If $\text{R}$ is the point that divides the line segment joining the points $\text{P}\left( {{\text{x}}_{1}},{{\text{y}}_{1}},{{\text{z}}_{1}} \right)$ and $\text{Q}\left( {{\text{x}}_{2}},{{\text{y}}_{2}},{{\text{z}}_{2}} \right)$ internally, then the coordinates of the point $\text{R}$ will be,

$\left( \frac{\text{m}{{\text{x}}_{2}}\text{+n}{{\text{x}}_{1}}}{\text{m+n}},\text{ }\frac{\text{m}{{\text{y}}_{2}}\text{+n}{{\text{y}}_{1}}}{\text{m+n}},\text{ }\frac{\text{m}{{\text{z}}_{2}}\text{+n}{{\text{z}}_{1}}}{\text{m+n}} \right)$

We have, the point $\text{R}$ dividing the line segment joining the points $\left( \text{-2,3,5} \right)$ and $\left( \text{1,-4,6} \right)$ internally in the ratio $\text{2:3}$

$\text{x=}\frac{\text{2}\left( \text{1} \right)\text{+3}\left( \text{-2} \right)}{\text{2+3}}$

$\text{y=}\frac{\text{2}\left( \text{-4} \right)\text{+3}\left( \text{3} \right)}{\text{2+3}}$

$\text{z=}\frac{\text{2}\left( \text{6} \right)\text{+3}\left( \text{5} \right)}{\text{2+3}}$

On solving we get,

$\text{x = }\frac{\text{-4}}{\text{5}}$

$\text{y = }\frac{\text{1}}{\text{5}}$

$\text{z = }\frac{\text{27}}{\text{5}}$

Therefore, the coordinates we obtain are, $\left( \frac{\text{-4}}{\text{5}},\frac{\text{1}}{\text{5}},\frac{\text{27}}{\text{5}} \right)$

(ii) $\text{2:3}$ externally,

Ans:  If $\text{R}$ is the point that divides the line segment joining the points $\text{P}\left( {{\text{x}}_{1}},{{\text{y}}_{1}},{{\text{z}}_{1}} \right)$ and $\text{Q}\left( {{\text{x}}_{2}},{{\text{y}}_{2}},{{\text{z}}_{2}} \right)$ externally, then the coordinates of the point $\text{R}$ will be,

$\left( \frac{\text{m}{{\text{x}}_{2}}\text{-n}{{\text{x}}_{1}}}{\text{m-n}},\text{ }\frac{\text{m}{{\text{y}}_{2}}\text{-n}{{\text{y}}_{1}}}{\text{m-n}},\text{ }\frac{\text{m}{{\text{z}}_{2}}\text{-n}{{\text{z}}_{1}}}{\text{m-n}} \right)$

We have, the point $\text{R}$ dividing the line segment joining the points $\left( \text{-2,3,5} \right)$ and $\left( \text{1,-4,6} \right)$ externally in the ratio $\text{2:3}$

$\text{x=}\frac{\text{2}\left( \text{1} \right)\text{-3}\left( \text{-2} \right)}{\text{2-3}}$

$\text{y=}\frac{\text{2}\left( \text{-4} \right)\text{-3}\left( \text{3} \right)}{\text{2-3}}$

$\text{z=}\frac{\text{2}\left( \text{6} \right)\text{-3}\left( \text{5} \right)}{\text{2-3}}$

On solving we get,

$\text{x = -8}$

$\text{y = 17}$

$\text{z = 3}$

Therefore, the coordinates we obtain are, $\left( \text{-8},\text{17},\text{3} \right)$

2. Given that $\text{P}\left( \text{3,2,-4} \right)$, $\text{Q}\left( \text{5,4,-6} \right)$ and $\text{R}\left( \text{9,8,-10} \right)$ are collinear. Find the ratio in which $\text{Q}$ divides $\text{PR}$.

Ans: Let the ratio in which the point $\text{Q}$ divides the line segment joining the points $\text{P}\left( \text{3,2,-4} \right)$ and $\text{R}\left( \text{9,8,-10} \right)$ be $\text{k:1}$.

Using section formula,

$\left( \text{5,4,-6} \right)\text{ = }\left( \frac{\text{k}\left( \text{9} \right)\text{+3}}{\text{k+1}},\text{ }\frac{\text{k}\left( 8 \right)\text{+2}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{-10} \right)-4}{\text{k+1}} \right)$

$\frac{\text{9k+3}}{\text{k+1}}\text{ = 5}$

$\text{9k+3 = 5k+5}$

$\text{4k = 2}$

$\text{k = }\frac{\text{2}}{\text{4}}$

$\text{k = }\frac{\text{1}}{\text{2}}$

Therefore, the ratio in which the point $\text{Q}$ divides the line segment joining the points $\text{P}\left( \text{3,2,-4} \right)$ and $\text{R}\left( \text{9,8,-10} \right)$ is $\text{1:2}$.

3. Find the ratio in which $\text{YZ}$-plane divides the line segment formed by joining the points, $\left( \text{2,4,7} \right)$ and $\left( \text{3,-5,8} \right)$.

Ans: Let the ratio in which the $\text{YZ}$-plane divides the line segment joining the points $\left( \text{-2,4,7} \right)$ and $\left( \text{3,-5,8} \right)$ be $\text{k:1}$.

Using section formula,

$\left( \text{0,y,z} \right)\text{ = }\left( \frac{\text{k}\left( \text{3} \right)\text{-2}}{\text{k+1}},\text{ }\frac{\text{k}\left( -5 \right)\text{+4}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{8} \right)+7}{\text{k+1}} \right)$

The $\text{x}$ coordinate is $\text{0}$ on $\text{YZ}$-plane,

$\frac{\text{3k-2}}{\text{k+1}}\text{ = 0}$

$\text{3k-2 = 0}$

$\text{3k = 2}$

$\text{k = }\frac{\text{2}}{\text{3}}$

Therefore, the ratio in which the $\text{YZ}$-plane divides the line segment joining the points $\left( \text{-2,4,7} \right)$ and $\left( \text{3,-5,8} \right)$  is $\text{2:3}$.

4. Using section formula, show that the points, $\text{A}\left( \text{2,-3,4} \right)$, $\text{B}\left( \text{-1,2,1} \right)$ and $\text{C}\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$ are collinear.

Ans: We are given three points $\text{A}\left( \text{2,-3,4} \right)$, $\text{B}\left( \text{-1,2,1} \right)$ and $\text{C}\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$

Let $\text{P}$ is point which divides the line segment $\text{AB}$in the ratio $\text{k:1}$.

Using section formula,

$\text{ }\left( \frac{\text{k}\left( \text{-1} \right)\text{+2}}{\text{k+1}},\text{ }\frac{\text{k}\left( 2 \right)\text{-3}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{1} \right)+4}{\text{k+1}} \right)$

The value of $\text{k}$ such that the point $\text{P}$ coincides with point $\text{C}$ will be,

$\frac{\text{-k+2}}{\text{k+1}}\text{ = 0}$

$\text{2-k = 0}$

$\text{-k = -2}$

$\text{k = 2}$

Now checking for $\text{k = 2}$.

The coordinates of point $\text{P}$ are $\text{ }\left( \frac{2\left( \text{-1} \right)\text{+2}}{\text{2+1}},\text{ }\frac{2\left( 2 \right)\text{-3}}{\text{2+1}},\text{ }\frac{2\left( \text{1} \right)+4}{\text{2+1}} \right)$

On solving, the coordinates of point $\text{P}$ are, $\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$

Therefore, the point $\left( \text{0,}\frac{\text{1}}{\text{3}}\text{,2} \right)$ divides $\text{AB}$in the ratio $\text{2:1}$. Also, the point is same as point $\text{C}$.

Hence, proved that the points $\text{A}$, $\text{B}$ and $\text{C}$ are collinear.

5. Find the coordinates of the points which trisect the line segment joining the points, $\text{P}\left( \text{4,2,-6} \right)$ and $\text{Q}\left( \text{10,-16,6} \right)$.

Ans: Let $\text{A}$ and $\text{B}$ are the points which trisect the line segment joining the points $\text{P}\left( \text{4,2,-6} \right)$ and $\text{Q}\left( \text{10,-16,6} \right)$.

(Image Will Be Updated Soon)

The point $\text{A}$ divides the line segment $\text{PQ}$ in the ratio of $\text{1:2}$.

Using section formula,

$\text{A}\left( \text{x,y,z} \right)\text{=}\left( \frac{\text{1}\left( \text{10} \right)\text{+2}\left( \text{4} \right)}{\text{1+2}}\text{, }\frac{\text{1}\left( \text{-16} \right)\text{+2}\left( \text{2} \right)}{\text{1+2}}\text{, }\frac{\text{1}\left( \text{6} \right)\text{+2}\left( \text{-4} \right)}{\text{1+2}} \right)\text{ }$

$\text{A}\left( \text{x,y,z} \right)\text{=}\left( \text{6,-4,-2} \right)$

Similarly, the point $\text{B}$ divides the line segment $\text{PQ}$ in the ratio of $\text{2:1}$.

$\text{B}\left( \text{x,y,z} \right)=\left( \frac{\text{2}\left( \text{10} \right)\text{+1}\left( \text{4} \right)}{\text{2+1}},\text{ }\frac{\text{2}\left( \text{-16} \right)\text{+1}\left( \text{2} \right)}{\text{2+1}},\text{ }\frac{\text{2}\left( \text{6} \right)\text{+1}\left( \text{-4} \right)}{\text{2+1}} \right)\text{ }$

$\text{B}\left( \text{x,y,z} \right)\text{=}\left( \text{8,-10,2} \right)$

Therefore, the point $\left( \text{6,-4,-2} \right)$ and $\left( \text{8,-10,2} \right)$ are the points which trisect the line segment joining the points $\text{P}\left( \text{4,2,-6} \right)$ and $\text{Q}\left( \text{10,-16,6} \right)$.


Miscellaneous Exercise

1. Three vertices of a parallelogram $\text{ABCD}$ are $\text{A}\left( \text{3,-1,2} \right)$, $\text{B}\left( \text{1,2,-4} \right)$ and $\text{C}\left( \text{-1,1,2} \right)$. Find the coordinates of the fourth vertex.

Ans: We are given the three vertices of a parallelogram $\text{ABCD}$ are $\text{A}\left( \text{3,-1,2} \right)$, $\text{B}\left( \text{1,2,-4} \right)$ and $\text{C}\left( \text{-1,1,2} \right)$.

Let the coordinates of the fourth vertex of the parallelogram $\text{ABCD}$ be $\text{D}\left( \text{x,y,z} \right)$.

(Image Will Be Updated Soon)

According to the property of parallelogram, the diagonals of the parallelogram bisect each other.

In this parallelogram $\text{ABCD}$, $\text{AC}$ and $\text{BD}$ at point $\text{O}$.

So, 

$\text{Mid-point of AC = Mid-point of BD}$

$\left( \frac{\text{3-1}}{\text{2}},\text{ }\frac{\text{-1+1}}{\text{2}},\text{ }\frac{\text{2+2}}{\text{2}} \right)\text{ = }\left( \frac{\text{x+1}}{\text{2}},\text{ }\frac{\text{y+1}}{\text{2}},\text{ }\frac{\text{z-4}}{\text{2}} \right)$

$\left( \text{1,0,2} \right)\text{ = }\left( \frac{\text{x+1}}{\text{2}},\text{ }\frac{\text{y+1}}{\text{2}},\text{ }\frac{\text{z-4}}{\text{2}} \right)$

$\frac{\text{x+1}}{\text{2}}\text{ = 1}$

$\frac{\text{y+2}}{\text{2}}\text{ = 0}$

$\frac{\text{z-4}}{\text{2}}\text{ = 2}$

We get, $\text{x = 1}$, $\text{y = 2}$ and $\text{z = 8}$

Therefore, the coordinates of the fourth vertex of the parallelogram $\text{ABCD}$ are $\text{D}\left( \text{1,-2,8} \right)$.

2. Find the lengths of the medians of the triangle with $\text{A}\left( \text{0,0,6} \right)$, $\text{B}\left( \text{0,4,0} \right)$ and $\text{C}\left( \text{6,0,0} \right)$. 

Ans: For the given triangle $\text{ABC}$. Let $\text{AD}$, $\text{BE}$ and $\text{CF}$ are the medians:

(Image Will Be Updated Soon)

We know that, median divides the line segment into two equal parts, so $\text{D}$ is the midpoint of $\text{BC}$, therefore,

$\text{Coordinates of point D = }\left( \frac{\text{0+6}}{\text{2}},\text{ }\frac{\text{4+0}}{\text{2}},\text{ }\frac{\text{0+0}}{\text{2}} \right)$

$\text{Coordinates of point D = }\left( \text{3,2,0} \right)$

$\text{AD = }\sqrt{{{\left( \text{0-3} \right)}^{\text{2}}}\text{+}{{\left( \text{0-2} \right)}^{\text{2}}}\text{+}{{\left( \text{6-0} \right)}^{\text{2}}}}$

$\text{AD = }\sqrt{\text{9+4+36}}$

$\text{AD = }\sqrt{\text{49}}$

$\text{AD = 7}$

Similarly, $\text{E}$ is the midpoint of $\text{AC}$,

$\text{Coordinates of point E = }\left( \frac{\text{0+6}}{\text{2}},\text{ }\frac{\text{0+0}}{\text{2}},\text{ }\frac{\text{0+6}}{\text{2}} \right)$

$\text{Coordinates of point E = }\left( \text{3,0,3} \right)$

$\text{AC = }\sqrt{{{\left( \text{3-0} \right)}^{\text{2}}}\text{+}{{\left( \text{0-4} \right)}^{\text{2}}}\text{+}{{\left( \text{3-0} \right)}^{\text{2}}}}$

$\text{AC = }\sqrt{\text{9+16+9}}$

$\text{AC = }\sqrt{\text{34}}$

Similarly, $\text{F}$ is the midpoint of $\text{AB}$,

$\text{Coordinates of point F = }\left( \frac{\text{0+0}}{\text{2}},\text{ }\frac{\text{0+4}}{\text{2}},\text{ }\frac{\text{6+0}}{\text{2}} \right)$

$\text{Coordinates of point F = }\left( \text{0,2,3} \right)$

$\text{CF = }\sqrt{{{\left( \text{6-0} \right)}^{\text{2}}}\text{+}{{\left( \text{0-2} \right)}^{\text{2}}}\text{+}{{\left( \text{0-3} \right)}^{\text{2}}}}$

$\text{CF = }\sqrt{\text{36+4+9}}$

$\text{CF = }\sqrt{\text{49}}$

$\text{CF = 7}$

Therefore, the lengths of the medians of the triangle $\text{ABC}$ we obtain are, $\text{7, }\sqrt{\text{34}}\text{, 7}$

3. If the origin is the centroid of the triangle $\text{PQR}$ with vertices $\text{P}\left( \text{2a,2,6} \right)$, $\text{Q}\left( \text{-4,3b,-10} \right)$ and $\text{R}\left( \text{8,14,2c} \right)$, then find the values of $\text{a}$, $\text{b}$ and $\text{c}$

Ans: The given triangle $\text{PQR}$

(Image Will Be Updated Soon)

We know that the coordinates of the centroid of triangle with the vertices $\left( {{\text{x}}_{1}},{{\text{y}}_{1}},{{\text{z}}_{1}} \right)$, $\left( {{\text{x}}_{2}},{{\text{y}}_{2}},{{\text{z}}_{2}} \right)$ and $\left( {{\text{x}}_{3}},{{\text{y}}_{3}},{{\text{z}}_{3}} \right)$ are,

$\frac{{{\text{x}}_{\text{1}}}\text{+}{{\text{x}}_{\text{2}}}\text{+}{{\text{x}}_{\text{3}}}}{\text{3}}=\frac{{{\text{y}}_{\text{1}}}\text{+}{{\text{y}}_{\text{2}}}\text{+}{{\text{y}}_{\text{3}}}}{\text{3}}=\frac{{{\text{z}}_{\text{1}}}\text{+}{{\text{z}}_{\text{2}}}\text{+}{{\text{z}}_{\text{3}}}}{\text{3}}$

For triangle $\text{PQR}$, the coordinates will be,

$\text{ }\!\!\Delta\!\!\text{ PQR = }\frac{\text{2a-4+8}}{\text{3}}=\frac{\text{2+3b+14}}{\text{3}}=\frac{\text{6-10+2c}}{\text{3}}$

$\text{ }\!\!\Delta\!\!\text{ PQR = }\frac{\text{2a+4}}{\text{3}}=\frac{\text{3b+16}}{\text{3}}=\frac{\text{2c-4}}{\text{3}}$

Now, we are given that centroid is the origin,

$\frac{\text{2a+4}}{\text{3}}\text{ = 0}$

$\frac{\text{3b+16}}{\text{3}}\text{ = 0}$

$\frac{\text{2c-4}}{\text{3}}\text{ = 0}$

$\text{a = -2}$,

$\text{b = -}\frac{\text{16}}{\text{3}}$

$\text{c = 2}$

Therefore, we obtain the values as $\text{a = -2}$, $\text{b = -}\frac{\text{16}}{\text{3}}$ and $\text{c = 2}$.


4. Find the coordinates of the point on $\text{y-axis}$ which are at a distance of $\text{5}\sqrt{\text{2}}$ from the point $\text{P}\left( \text{3,-2,5} \right)$

Ans: For the point to be on $\text{x-axis}$ the $\text{y-coordinate}$ and $\text{z-coordinate}$ become zero.

Let the point on $\text{y-axis}$ at a distance of $\text{5}\sqrt{\text{2}}$ from point $\text{P}\left( \text{3,-2,5} \right)$ be  $\text{A}\left( \text{0,b,0} \right)$,

We have, $\text{AP = 5}\sqrt{\text{2}}$

Using distance formula,

$\text{A}{{\text{P}}^{\text{2}}}\text{ = 50}$

${{\left( \text{3-0} \right)}^{\text{2}}}\text{+}{{\left( \text{-2-b} \right)}^{\text{2}}}\text{+}{{\left( \text{5-0} \right)}^{\text{2}}}\text{ = 50}$

$\text{9+4+}{{\text{b}}^{\text{2}}}\text{+4b+25 = 50}$

${{\text{b}}^{\text{2}}}\text{+4b-12 = 0}$

${{\text{b}}^{\text{2}}}\text{+6b-2b-12 = 0}$

$\left( \text{b+6} \right)\left( \text{b-2} \right)\text{ = 0}$

$\text{b = -6}$ or $\text{b = 2}$

The coordinate of the points is $\left( \text{0,2,0} \right)$ and $\left( \text{0,-6,0} \right)$


5. A point $\text{R}$ with $\text{x-coordinate}$ $\text{4}$ lies on the line segment joining the points $\text{P}\left( \text{2,-3,4} \right)$ and $\text{Q}\left( \text{8,0,10} \right)$. Find the coordinates of the point $\text{R}$.

Ans: Let $\text{R}$ is point which divides the line segment $\text{PQ}$in the ratio $\text{k:1}$.

Using section formula,

$\text{ }\left( \frac{\text{k}\left( \text{8} \right)\text{+2}}{\text{k+1}},\text{ }\frac{\text{k}\left( 0 \right)\text{-3}}{\text{k+1}},\text{ }\frac{\text{k}\left( \text{10} \right)+4}{\text{k+1}} \right)\text{ = }\left( \frac{\text{8k+2}}{\text{k+1}},\text{ }\frac{-3}{\text{k+1}},\text{ }\frac{\text{10k+4}}{\text{k+1}} \right)$

The value of $\text{x-coordinate}$ of the point $\text{R}$ is $\text{4}$,

$\frac{\text{8k+2}}{\text{k+1}}\text{ = 4}$

$\text{8k+2 = 4k+4}$

$\text{4k = 2}$

$\text{k = }\frac{\text{1}}{\text{2}}$

So, the coordinates of the point $\text{R}$ are,

$\left( \text{4,}\frac{\text{-3}}{\frac{\text{1}}{\text{2}}\text{+1}}\text{,}\frac{\text{10}\left( \frac{\text{1}}{\text{2}} \right)\text{+4}}{\frac{\text{1}}{\text{2}}\text{+1}} \right)\text{ = }\left( \text{4,-2,6} \right)$


6. If $\text{A}$ and $\text{B}$ be the points $\left( \text{3,4,5} \right)$ and $\left( \text{-1,3,-7} \right)$ respectively, find the equation of the set of points $\text{P}$ such that $\text{P}{{\text{A}}^{\text{2}}}\text{+P}{{\text{B}}^{\text{2}}}\text{ = }{{\text{k}}^{\text{2}}}$, where $\text{k}$ is a constant.

Ans: Let the coordinates of point $\text{P}$ be $\left( \text{x,y,z} \right)$.

Using distance formula we get,

$\text{P}{{\text{A}}^{\text{2}}}\text{=}{{\left( \text{x-3} \right)}^{\text{2}}}\text{+}{{\left( \text{y-4} \right)}^{\text{2}}}\text{+}{{\left( \text{z-5} \right)}^{\text{2}}}$

$\text{P}{{\text{A}}^{\text{2}}}\text{ = }{{\text{x}}^{\text{2}}}\text{+9-6x+}{{\text{y}}^{\text{2}}}\text{+16-8y+}{{\text{z}}^{\text{2}}}\text{+25-10z}$

$\text{P}{{\text{A}}^{\text{2}}}\text{ = }{{\text{x}}^{\text{2}}}\text{-6x+}{{\text{y}}^{\text{2}}}\text{-8y+}{{\text{z}}^{\text{2}}}\text{-10z+50}$

Similarly,

$\text{P}{{\text{B}}^{\text{2}}}\text{ = }{{\left( \text{x-1} \right)}^{\text{2}}}\text{+}{{\left( \text{y-3} \right)}^{\text{2}}}\text{+}{{\left( \text{z-7} \right)}^{\text{2}}}$

$\text{P}{{\text{A}}^{\text{2}}}\text{ = }{{\text{x}}^{\text{2}}}\text{-2x+}{{\text{y}}^{\text{2}}}\text{-6y+}{{\text{z}}^{\text{2}}}\text{-14z+59}$

We are given that,

$\text{P}{{\text{A}}^{\text{2}}}\text{+P}{{\text{B}}^{\text{2}}}\text{ = }{{\text{k}}^{\text{2}}}$

So,

$\left( {{\text{x}}^{\text{2}}}\text{-6x+}{{\text{y}}^{\text{2}}}\text{-8y+}{{\text{z}}^{\text{2}}}\text{-10z+50} \right)\text{+}\left( {{\text{x}}^{\text{2}}}\text{-2x+}{{\text{y}}^{\text{2}}}\text{-6y+}{{\text{z}}^{\text{2}}}\text{-14z+59} \right)\text{ = }{{\text{k}}^{2}}$

$\text{2}{{\text{x}}^{\text{2}}}\text{+2}{{\text{y}}^{\text{2}}}\text{+2}{{\text{z}}^{\text{2}}}\text{-4x-14y+14z+109 =}\ {{\text{k}}^{\text{2}}}$

$\text{2}\left( {{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}\text{-2x-7y+7z} \right)\text{ = }{{\text{k}}^{\text{2}}}\text{-109}$

${{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}\text{-2x-7y+7z = }\frac{{{\text{k}}^{\text{2}}}\text{-109}}{\text{2}}$

Therefore, the equation is as follows ${{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}\text{-2x-7y+2z = }\frac{{{\text{k}}^{\text{2}}}\text{-109}}{\text{2}}$

NCERT Solutions for Class 11 Maths Chapter 11 - Introduction to Three Dimensional Geometry

Let us consider a room with a rectangular floor. 

(Image to be added soon)

Let $OX$ and $OY$ be two adjacent edges of the floor, which we take as x-axis & y-axis. Then for locating a point $p$ exactly on the floor we draw perpendiculars $PM$ & $PN$ respectively on $OX$ or $OY$ and measure their lengths. The distances $OM ( = PN)$ and $ON ( = PM)$ are called the x- and y-coordinates respectively. $OP$ is the distance of point $P$ from the meeting point $O$ of $OX$ & $OY$, which we call the origin -- this is what is called the 2D Cartesian Coordinate system. 

But how can we exactly locate a point like a marking $Q$ made on the dome of a fan hanging from the ceiling fan? For this, we have to draw a line from $P$, perpendicular to the floor, to the marking $Q$ and measure its height. This means we require another line $OZ$ which will be the line pointing to the two adjacent walls where the bottom edges are $OX$ & $OY$. The distance $OZ (=PQ)$ is the $3^{rd}$ coordinate of the point $Q$. The lines $OX, OY$ & $OZ$ are the axes of what we call the 3D Cartesian Coordinate system.

(Image to be added soon)

Here the origin $O$ is the meeting point of the two adjacent walls and the floor. This 3D Cartesian Coordinate system is necessary to locate a point in space-like a balloon floating in the air above the ground, the location of an airplane flying in the sky, or a satellite orbiting the earth.

Coordinates of a Point in Space

Let the origin be $O$ & let the mutually perpendicular lines be $OX, OY$ and $OZ$, taken as X-axis, Y-axis & Z-axis respectively. 

(Image to be added soon)

The planes, $YOZ, ZOX$ & $XOY$ are respectively called a y-z plane, z-x plane & xy- plane. These panes known as coordinate planes, divide the space into eight parts, called octants.

Let $p$ be a point in space. Through $P$, we draw planes parallel to the coordinate planes and meet the axes $OX, OY$ & $OZ$ at points $A, B$ & $C$ respectively. We complete the parallelepiped whose coterminous edges are $OA, OB$ & $OC$.

Let $OA = x, OB = y$ & $OC =z$

Then we say that the coordinates of $P$ are $(x, y, z)$. As can be seen from the fi. $x, y, z$ are a distance of point $P$ respectively from $yz, xz$ & $xy$ -plane.

Note:

  1. Any point on the $y-z$ plane will have its x-coordinate equal to zero. Similarly, a point on the $z-x$ plane will have $y = 0$ & a point on the $xy$ plane will have $z = 0$.

  2. Coordinates of the origin are $O(0, 0, 0)$.

Distance Formula in 3D

In 2D coordinate geometry, the distance between two pints $P(x_1,y_1)$ & $Q(x_2,y_2)$ is given by

$PQ = \sqrt{(x_2 -x_1)^2+ (y_2 -y_1)^2}$  similar in a 3D coordinate system, the distance between two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ is given by $AB = \sqrt{(x_2 -x_1)^2+ (y_2 -y_1)^2+(z_2 -z_1)^2}$

Note: Distance of a point $P(x, y, z)$ from the origin $O(0, 0, 0)$ is 

$OP = \sqrt{(x -0)^2+ (y-0)^2+(z-0)^2}$ 

$OP = \sqrt{x^2 + y^2 + z^2}$

Illustrated Example

Example1: Find the distance between the points $A( -2, 1, -3)$ & $B(4, 3, -6)$.

Sol. 

Required Distance

$AB = \sqrt {((4-(-1))^2 + (3-1)^2 +(6-(-3))^2}$

$AB = \sqrt{6^ 2+2^2+(-3)^2} = \sqrt{36+4+9} = \sqrt49 = 7\text{units}$

Section Formula

In the 2D coordinate system, if a point $R(\bar{x},\bar{y})$ divides the two joins of the points $P(x_1+y_1)$ & 

$Q (x_2 + y_2)$ in the ratio m:n, then

$\bar{x}=\dfrac{mx_2+nx_1}{m + n}, \bar{y}=\dfrac{my_2+ny_1}{m + n}, \bar{z}=\dfrac{mz_2+nz_1}{m + n}$

Note: 

  1. The coordinates of the midpoint of the join $P(x_1, y_1, z_1)$ & $Q(z_2, y_2, z_2)$ is given by 

(here $m =n$) $\bar{x}=\dfrac{x_2+x_1}{2}, \bar{y}=\dfrac{y_2+y_1}{2}, \bar{z}=\dfrac{z_2+z_1}{2}$ 

  1. If a point $R(\bar{x}, \bar{y}, \bar{z})$ divides the join of $P(x_1, y_1, z_1)$ & $Q(x_2, y_2, z_2)$ externally, then 

$\bar{x}=\dfrac{mx_2+nx_1}{m + n}, \bar{y}=\dfrac{my_2+ny_1}{m + n}, \bar{z}=\dfrac{mz_2+nz_1}{m + n}$

Illustrated Example

Example 2: Find the coordinates of the point which divides the join of the points $P(5, 4, 2)$ & 

$Q( -1, -2, 4)$ in ratio $2:3$ .

Sol. 

If $R(\bar{x}, \bar{y}, \bar{z})$ be the required point, then $\bar{x}=\dfrac{2(-1)+3 \times 5}{2+3}, \bar{y}=\dfrac{2(-2)+3 > 4}{2+3}, \bar{z}=\dfrac{2 \times 4+3 \times 2}{2+3}$ $   = \dfrac{13}{5} = \dfrac{8}{5} = \dfrac{14}{5}$ $\therefore$ Required points $\left(\dfrac{13}{5}, \dfrac{8}{5},\dfrac{14}{5}\right)$


We Cover All Exercises in the Chapter Given Below:- 

EXERCISE 11.1 - 4 Questions with Solutions

EXERCISE 11.2 - 5 Questions with Solutions

MISCELLANEOUS EXERCISE - 4 Questions with Solutions.


Important Study Material Links for Chapter 12: Limits and Derivatives


NCERT Class 11 Maths Solutions Chapter-wise Links - Download the FREE PDF

Additional Study Materials for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

1. What is 3D geometry in Class 11 mathematics?

3D geometry in Class 11 introduces students to coordinate geometry in three-dimensional space, covering points, lines, and planes using x, y, and z coordinates. This chapter establishes the foundation for understanding spatial relationships, distance formulas, and section formulas in three dimensions.

2. How do NCERT Solutions help students understand introduction to three dimensional geometry concepts?

Instruction: NCERT Solutions provide step-by-step explanations for all chapter exercises, covering coordinate systems, distance calculations, and section formulas with detailed working.

Why it matters: Three-dimensional concepts can be abstract, making visual and methodical solutions essential for clarity.

Steps: Solutions break down complex 3D problems into manageable parts, show coordinate plotting techniques, and demonstrate formula applications with clear reasoning at each stage.

Check: Students can verify their understanding by comparing their approach with the provided solutions. Tip: Practice visualizing 3D coordinates on paper before solving.

These solutions bridge the gap between 2D and 3D thinking, making spatial geometry more accessible for students.

3. What topics are covered in the introduction to 3D geometry Class 11 chapter?

The chapter covers coordinate axes and planes in three dimensions, coordinates of points in space, distance between two points, section formula, and coordinates of centroid. Students learn to work with ordered triplets (x, y, z) and understand the relationship between 2D and 3D coordinate systems.

4. Can students access free PDF of three dimensional geometry NCERT solutions?

Instruction: Yes, students can download Free PDF versions of complete NCERT solutions for Class 11 three dimensional geometry from educational platforms like Vedantu.

Why it matters: PDF format allows offline study, easy printing, and convenient access during exam preparation without internet dependency.

Steps:

  • Visit the solutions page for the specific chapter
  • Click the download option for PDF format
  • Save the file for offline reference
  • Use it alongside NCERT textbook practice

Check: Ensure the PDF contains all exercise solutions and in-text examples. Tip: Download before exam periods for uninterrupted study.

Free PDF access makes quality solutions available to all students regardless of their internet connectivity.

5. Why is understanding coordinate systems important in 3D geometry?

Coordinate systems form the foundation of 3D geometry by establishing how points are located in three-dimensional space using x, y, and z axes. This understanding is crucial for solving problems involving distance, position, and spatial relationships in higher mathematics and real-world applications.

6. How does the distance formula work in three dimensional space?

Instruction: The distance formula in 3D space calculates the straight-line distance between two points using coordinates (x₁, y₁, z₁) and (x₂, y₂, z₂).

Why it matters: This extends the familiar 2D distance concept to three dimensions, essential for spatial problem-solving.

Steps: Apply the formula d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²], substitute the given coordinates, calculate each squared difference, sum them, and find the square root.

Check: Verify that all coordinate differences are correctly calculated. Formula: Remember this is an extension of Pythagoras theorem in 3D.

Example: Distance between (1,2,3) and (4,6,8) equals √[(4-1)² + (6-2)² + (8-3)²] = √50.

Mastering this formula enables students to solve complex spatial geometry problems with confidence.

7. What is the section formula in introduction to 3d geometry Class 11?

The section formula determines coordinates of a point dividing a line segment joining two points in a given ratio. For points A(x₁, y₁, z₁) and B(x₂, y₂, z₂), if point P divides AB in ratio m:n, then P's coordinates are calculated using the internal and external division formulas.

8. Are 3d geometry class 11 NCERT solutions aligned with the latest syllabus?

Instruction: Quality NCERT solutions for 3D geometry Class 11 are updated to match the current NCERT textbook and CBSE syllabus requirements.

Why it matters: Syllabus changes can affect question patterns, marking schemes, and the depth of topics covered in examinations.

Steps: Check that solutions include all current exercise questions, follow the latest NCERT methodology, incorporate any recent formula updates, and align with current board exam patterns.

Check: Verify the solutions cover all exercises from your NCERT textbook edition. Tip: Cross-reference with your physical textbook to ensure completeness.

Updated solutions ensure students prepare with relevant content that matches their actual examination requirements.

9. How do students find the centroid coordinates in three dimensional geometry?

The centroid of a triangle with vertices at (x₁, y₁, z₁), (x₂, y₂, z₂), and (x₃, y₃, z₃) has coordinates [(x₁+x₂+x₃)/3, (y₁+y₂+y₃)/3, (z₁+z₂+z₃)/3]. This represents the average of all three coordinates and extends the 2D centroid concept to three dimensions.

10. What makes 3D geometry Class 11 challenging for students?

Instruction: Students often find 3D geometry challenging due to the transition from 2D visualization to three-dimensional thinking and the introduction of the z-coordinate.

Why it matters: Understanding these challenges helps students prepare better and use appropriate study strategies for this spatial topic.

Steps:

  • Practice visualizing 3D coordinate systems regularly
  • Work through numerous examples systematically
  • Use physical models or drawings when needed
  • Master distance and section formulas through repetition

Check: Students should be comfortable plotting points in 3D space. Tip: Start with simple coordinate problems before attempting complex applications.

With consistent practice and proper guidance, students can overcome these initial difficulties and excel in 3D geometry.