
Common roots of the equations\[2{\sin ^2}x + {\sin ^2}2x = 2\]and \[\sin 2x + \cos 2x = \tan x\]are
A. \[x = (2n - 1)\frac{\pi }{2}\]
В. \[x = (2n + 1)\frac{\pi }{4}\]
C. \[x = (2n + 1)\frac{\pi }{3}\]
D. None of these
Answer
204.3k+ views
Hint: When algebraic procedures are used to solve a trigonometric problem, the term "root loss" describes how some roots are lost. To precisely determine the answer, it is necessary to perform the superfluous root check. In this case, the common roots for the equation\[2{\sin ^2}x + {\sin ^2}2x = 2\]and \[\sin 2x + \cos 2x = \tan x\]is found by using trigonometry identities
Complete step by step solution:We have given the equation, as per the question:
\[2{\sin ^2}x + {\sin ^2}2x = 2\]-- (i)
\[\sin 2x + \cos 2x = \tan x\]-- (ii)
First we can solve equation (i)
\[{\sin ^2}2x = 2{\cos ^2}x\]
\[ \Rightarrow {\rm{ }}4{\sin ^2}x{\cos ^2}x = 2{\cos ^2}x\]
In order to simplify further, we have to take the common terms outside:
\[ \Rightarrow {\cos ^2}x\left( {2{{\sin }^2}x - 1} \right) = 0\]
Solve the terms in the parentheses, so as to make the expression less complicated to evaluate:
\[ \Rightarrow 2{\cos ^2}x\cos 2x = 0\]
Simplify in terms of cosine:
\[ \Rightarrow \cos x = 0\]Or\[\cos 2x = 0\]
Also can be written as:
\[x = (2n + 1)\frac{\pi }{2}\]Or\[x = (2n + 1)\frac{\pi }{4}\],\[n \in Z\]--(iii)
Now, we will solve Eq. (ii)
\[\dfrac{{2\tan x + 1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}} = \tan x\]
Solve and simplify the denominator to make the fraction to expression:
\[ \Rightarrow \tan 3x + {\tan ^2}x - \tan x - 1 = 0\]
Factor the equation for less complicate to solve:
\[ \Rightarrow (\tan 2x - 1)(\tan x + 1) = 0\]
Hence after solving,
\[ \Rightarrow \tan x = \pm 1 \Rightarrow x = n\pi \pm \frac{\pi }{4},n \in Z\]-- (iv)
From equations (iii) and (iv);
Hence the common roots are \[(2n + 1)\frac{\pi }{4}\]
Option ‘B’ is correct
Note: The identities of triangles are frequently forgotten by students. Failing to adjust or change the scope of. Getting the right side of the equation to equal zero is the first step in solving the problem. We factor next. After that, we solve by setting each element to zero. This kind of problem can be solved in a number of ways. There may be different formulae to handle this kind of problem as well, but we must think carefully and select the best approach and formula. Trigonometry exercise and formula study will help us achieve this.
Complete step by step solution:We have given the equation, as per the question:
\[2{\sin ^2}x + {\sin ^2}2x = 2\]-- (i)
\[\sin 2x + \cos 2x = \tan x\]-- (ii)
First we can solve equation (i)
\[{\sin ^2}2x = 2{\cos ^2}x\]
\[ \Rightarrow {\rm{ }}4{\sin ^2}x{\cos ^2}x = 2{\cos ^2}x\]
In order to simplify further, we have to take the common terms outside:
\[ \Rightarrow {\cos ^2}x\left( {2{{\sin }^2}x - 1} \right) = 0\]
Solve the terms in the parentheses, so as to make the expression less complicated to evaluate:
\[ \Rightarrow 2{\cos ^2}x\cos 2x = 0\]
Simplify in terms of cosine:
\[ \Rightarrow \cos x = 0\]Or\[\cos 2x = 0\]
Also can be written as:
\[x = (2n + 1)\frac{\pi }{2}\]Or\[x = (2n + 1)\frac{\pi }{4}\],\[n \in Z\]--(iii)
Now, we will solve Eq. (ii)
\[\dfrac{{2\tan x + 1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}} = \tan x\]
Solve and simplify the denominator to make the fraction to expression:
\[ \Rightarrow \tan 3x + {\tan ^2}x - \tan x - 1 = 0\]
Factor the equation for less complicate to solve:
\[ \Rightarrow (\tan 2x - 1)(\tan x + 1) = 0\]
Hence after solving,
\[ \Rightarrow \tan x = \pm 1 \Rightarrow x = n\pi \pm \frac{\pi }{4},n \in Z\]-- (iv)
From equations (iii) and (iv);
Hence the common roots are \[(2n + 1)\frac{\pi }{4}\]
Option ‘B’ is correct
Note: The identities of triangles are frequently forgotten by students. Failing to adjust or change the scope of. Getting the right side of the equation to equal zero is the first step in solving the problem. We factor next. After that, we solve by setting each element to zero. This kind of problem can be solved in a number of ways. There may be different formulae to handle this kind of problem as well, but we must think carefully and select the best approach and formula. Trigonometry exercise and formula study will help us achieve this.
Recently Updated Pages
If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main

The weight of a 13 m long iron rod is 234 kg The weight class 10 maths JEE_Main

The centroid of a triangle is the point of concurrence class 10 maths JEE_Main

A man on tour travels first 160 km at 64 kmhr and -class-10-maths-JEE_Main

The population of a city increases each year by 4 of class 10 maths JEE_Main

The area of square inscribed in a circle of diameter class 10 maths JEE_Main

Trending doubts
JEE Main 2026: Exam Date, Syllabus, Eligibility, Application Form & Preparation Tips

NTA JEE Main 2026 Registration Live: Check Dates, Fees, and Eligibility Here

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2026 (Updated)

Newton’s Laws of Motion Explained: Concepts, Formulas & Uses

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

All Mensuration Formulas with Examples and Quick Revision

