
When beats are produced by two progressive waves of nearly the same frequency, which one of the following is correct?
A. The particles vibrate simply harmonically with the frequency equal to the difference in the component frequencies.
B. The amplitude of vibration at any point changes simply harmonically with a frequency equal to the difference in the frequencies of the two waves.
C. The frequency of beats depends upon the position where the observer is.
D. The frequency of beats changes as the time progresses.
Answer
168.3k+ views
Hint: In the case, if a problem is based on progressive waves, we know that there are three kinds of waves – longitudinal, transverse, and orbital with different aspects hence, analyze every option with the scientific approach and check which option seems to be more appropriate for the given situation to present the answer with proper explanation.
Complete step by step solution:
We know that, displacement relation in progressive wave is given as:
$y = {A_b}\sin (2\pi {n_{av}}t)$ … (1)
where, ${A_b} = 2A\cos (2\pi {n_A}t)$ = amplitude of vibration
where, ${n_A} = \dfrac{{{n_1} - {n_2}}}{2}$
where ${n_1}$= frequency of 1st progressive wave
and, ${n_2}$= frequency of 2nd progressive wave
Then, eq. (1) becomes
$y = 2A\cos (\pi ({n_1} - {n_2})t)\sin (2\pi {n_{av}}t)$
Thus, the amplitude of vibration at any point changes simply harmonically with a frequency equal to the difference in the frequencies of the two waves.
Hence, the correct option is B.
Note: Since this is a problem of multiple-choice questions (theory-based) hence, it is essential that given options are to be analysed very carefully to give a precise explanation. While writing an explanation of this kind of conceptual problem, always keep in mind to provide the exact reasons in support of your explanation.
Complete step by step solution:
We know that, displacement relation in progressive wave is given as:
$y = {A_b}\sin (2\pi {n_{av}}t)$ … (1)
where, ${A_b} = 2A\cos (2\pi {n_A}t)$ = amplitude of vibration
where, ${n_A} = \dfrac{{{n_1} - {n_2}}}{2}$
where ${n_1}$= frequency of 1st progressive wave
and, ${n_2}$= frequency of 2nd progressive wave
Then, eq. (1) becomes
$y = 2A\cos (\pi ({n_1} - {n_2})t)\sin (2\pi {n_{av}}t)$
Thus, the amplitude of vibration at any point changes simply harmonically with a frequency equal to the difference in the frequencies of the two waves.
Hence, the correct option is B.
Note: Since this is a problem of multiple-choice questions (theory-based) hence, it is essential that given options are to be analysed very carefully to give a precise explanation. While writing an explanation of this kind of conceptual problem, always keep in mind to provide the exact reasons in support of your explanation.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Trending doubts
Uniform Acceleration

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Charging and Discharging of Capacitor

Other Pages
JEE Main Chemistry Question Paper with Answer Keys and Solutions

Class 9 Physics MCQs: Chapter-wise Questions, Answers & PDFs

Current Loop as Magnetic Dipole and Its Derivation for JEE

Work Energy and Power Class 11 Notes: CBSE Physics Chapter 5

Find the initial velocity of the projectile V0 if a class 11 physics JEE_Main

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
