Answer
Verified
114.9k+ views
Hint: To solve this question we need to use the relation between the intensity and the power of a source. The power of a point source is uniformly spread over the concentric spheres centered at the point charge.
Complete step-by-step solution:
A point source of a wave spreads the energy uniformly all over the space in all the three dimensions. So this means that the intensity of the wave must be uniform over the surface area of each of the concentric spheres centered at the point source.
Now, according to the question, the point source is of sound which is radiating the energy at the power of $3.14$ watts, that is,
$P = 3.14{\text{W}}$..............(1)
We have to find out the intensity level of the loudness at a distance of $15.8m$ from the point source.
Now, at a distance of $15.8m$ from the point source, we will have a sphere of radius $15.8m$ centred at the point source of sound. We know that the surface area of a sphere is given by
$A = 4\pi {r^2}$
Since the radius of the sphere is equal to $15.8m$, so we substitute $r = 15.8m$ in the above expression to get
$A = 4\pi {\left( {15.8} \right)^2}$...................(2)
Now, we know that the intensity is equal to the power per unit area. So the intensity at the distance of $15.8m$ from the point source of sound becomes
$I = \dfrac{P}{A}$
Substituting (1) and (2) in the above expression, we get
$I = \dfrac{{3.14}}{{4\pi {{\left( {15.8} \right)}^2}}}$
According to the question $\pi = 3.14$. Substituting it above, we get
\[I = \dfrac{{3.14}}{{4 \times 3.14 \times {{\left( {15.8} \right)}^2}}}\]
On solving we get
$I \approx {10^{ - 3}}{\text{W}}/{m^2}$
Now, we know that the intensity in decibels is given by the following equation
$I\left( {dB} \right) = \log \left( {\dfrac{{I\left( {{\text{W}}/{m^2}} \right)}}{{{{10}^{ - 12}}}}} \right)$
$ \Rightarrow I\left( {dB} \right) = \log \left( {\dfrac{{{{10}^{ - 3}}}}{{{{10}^{ - 12}}}}} \right)$
On solving we get
$I\left( {dB} \right) = 9dB$
Thus, the intensity level of loudness at the given distance is equal to $9dB$.
Hence, the correct answer is option A.
Note: The decibel is a unit of the power or intensity which is expressed as the ratio of the power to the root power on a logarithmic scale. The logarithm of the intensity is more nearly approximated to the human perception and is not linearly related. That is why the decibel level is preferred.
Complete step-by-step solution:
A point source of a wave spreads the energy uniformly all over the space in all the three dimensions. So this means that the intensity of the wave must be uniform over the surface area of each of the concentric spheres centered at the point source.
Now, according to the question, the point source is of sound which is radiating the energy at the power of $3.14$ watts, that is,
$P = 3.14{\text{W}}$..............(1)
We have to find out the intensity level of the loudness at a distance of $15.8m$ from the point source.
Now, at a distance of $15.8m$ from the point source, we will have a sphere of radius $15.8m$ centred at the point source of sound. We know that the surface area of a sphere is given by
$A = 4\pi {r^2}$
Since the radius of the sphere is equal to $15.8m$, so we substitute $r = 15.8m$ in the above expression to get
$A = 4\pi {\left( {15.8} \right)^2}$...................(2)
Now, we know that the intensity is equal to the power per unit area. So the intensity at the distance of $15.8m$ from the point source of sound becomes
$I = \dfrac{P}{A}$
Substituting (1) and (2) in the above expression, we get
$I = \dfrac{{3.14}}{{4\pi {{\left( {15.8} \right)}^2}}}$
According to the question $\pi = 3.14$. Substituting it above, we get
\[I = \dfrac{{3.14}}{{4 \times 3.14 \times {{\left( {15.8} \right)}^2}}}\]
On solving we get
$I \approx {10^{ - 3}}{\text{W}}/{m^2}$
Now, we know that the intensity in decibels is given by the following equation
$I\left( {dB} \right) = \log \left( {\dfrac{{I\left( {{\text{W}}/{m^2}} \right)}}{{{{10}^{ - 12}}}}} \right)$
$ \Rightarrow I\left( {dB} \right) = \log \left( {\dfrac{{{{10}^{ - 3}}}}{{{{10}^{ - 12}}}}} \right)$
On solving we get
$I\left( {dB} \right) = 9dB$
Thus, the intensity level of loudness at the given distance is equal to $9dB$.
Hence, the correct answer is option A.
Note: The decibel is a unit of the power or intensity which is expressed as the ratio of the power to the root power on a logarithmic scale. The logarithm of the intensity is more nearly approximated to the human perception and is not linearly related. That is why the decibel level is preferred.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Colleges - Detailed Description of Top JEE Colleges
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Other Pages
Current Loop as Magnetic Dipole and Its Derivation for JEE
A particle performs SHM of amplitude A along a straight class 11 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion