
What is the value of the integral \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \]?
A. \[\dfrac{1}{{n + 1}}\]
B. \[\dfrac{1}{{n + 2}}\]
C. \[\dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
D. \[\dfrac{1}{{n + 1}} + \dfrac{1}{{n + 2}}\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, multiply the given integral by \[ - 1\] and simplify it. Then, rewrite \[\left( { - x} \right)\] as \[\left( {1 - x - 1} \right)\] in the integral. After that, perform some mathematical operations and simplify the integral. Then, apply the subtraction rule of the integration and solve the integrals by using the standard integral formula. In the end, apply the upper and the lower limits to get the required answer.
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\]
Complete step by step solution: The given definite integral is \[I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \].
Let’s simplify the given interval.
Multiply both sides by \[ - 1\].
\[ - I = \int\limits_0^1 { - x{{\left( {1 - x} \right)}^n}dx} \]
Rewrite \[\left( { - x} \right)\] by adding and subtracting 1.
\[ - I = \int\limits_0^1 {\left( {1 - x - 1} \right){{\left( {1 - x} \right)}^n}dx} \]
Simplify the right-hand side.
\[ - I = \int\limits_0^1 {\left[ {\left( {1 - x} \right){{\left( {1 - x} \right)}^n} - 1{{\left( {1 - x} \right)}^n}} \right]dx} \]
\[ \Rightarrow - I = \int\limits_0^1 {\left[ {{{\left( {1 - x} \right)}^{n + 1}} - {{\left( {1 - x} \right)}^n}} \right]dx} \]
Now apply the subtraction rule of the integration on the right-hand side.
\[ \Rightarrow - I = \int\limits_0^1 {{{\left( {1 - x} \right)}^{n + 1}}dx - } \int\limits_0^1 {{{\left( {1 - x} \right)}^n}dx} \]
Solve the integrals by using the integration formula \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
We get,
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1 + 1}}}}{{n + 1 + 1}}} \right]_a^1 - \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 2}}}}{{n + 2}}} \right]_a^1 + \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^1\]
Apply the upper and lower limit on the right-hand side.
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( {1 - 1} \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( {1 - 0} \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( {1 - 1} \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( {1 - 0} \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ { - \dfrac{{{{\left( 0 \right)}^{n + 2}}}}{{n + 2}} + \dfrac{{{{\left( 1 \right)}^{n + 2}}}}{{n + 2}}} \right] + \left[ {\dfrac{{{{\left( 0 \right)}^{n + 1}}}}{{n + 1}} - \dfrac{{{{\left( 1 \right)}^{n + 1}}}}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \left[ {\dfrac{1}{{n + 2}}} \right] + \left[ { - \dfrac{1}{{n + 1}}} \right]\]
\[ \Rightarrow - I = \dfrac{1}{{n + 2}} - \dfrac{1}{{n + 1}}\]
Again, multiply both sides by \[ - 1\].
\[ \Rightarrow I = \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}}\]
Option ‘C’ is correct
Note: Sometimes students get confused and solve the above given integral by using the power rule of integration. Then get \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ {\dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\], which is incorrect formula. The correct formula is \[\int\limits_a^b {{{\left( {1 - x} \right)}^n}dx} = \left[ { - \dfrac{{{{\left( {1 - x} \right)}^{n + 1}}}}{{n + 1}}} \right]_a^b\].
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

