
If \[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\] and \[ab=1\], then $a$ and $b$are the roots of the equation
A. \[{{x}^{2}}+4x-1=0\]
B. \[{{x}^{2}}-4x-1=0\]
C. \[{{x}^{2}}+4x+1=0\]
D. \[{{x}^{2}}-4x+1=0\]
Answer
228k+ views
Hint: In this question, we have to find the equation that is formed by the roots $a$ and $b$ where the root $a$ is the sum of the given series. The root $b$ is obtained by the given condition. Since the given series is a geometric series, we can find the sum of the infinite G.P for $a$ value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - Common ratio.
The sum of the infinite G.P is calculated by
${{S}_{\infty }}=\dfrac{a}{1-r}$
Here ${{S}_{\infty }}$ - Sum of the infinite terms of the series
The quadratic equation formed by two roots $a$ and $b$ is
$(x-a)(x-b)=0$
Complete step by step solution: Given series is
\[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\]
This is a geometric series. So, the sum of the $n$ terms is
\[\begin{align}
& a=\dfrac{1}{1-\left( \sqrt{3}-1 \right)} \\
& \Rightarrow a=\dfrac{1}{2-\sqrt{3}} \\
\end{align}\]
To simplify this complex number $2-\sqrt{3}$, multiplying and dividing this by its conjugate $2+\sqrt{3}$.
Then, we get
\[\begin{align}
& a=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}} \\
& \text{ }=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3} \\
\end{align}\]
But we have \[ab=1\]. From this, we get
\[\begin{align}
& ab=1 \\
& \Rightarrow b=\dfrac{1}{a} \\
\end{align}\]
On substituting $a$ value, we get
\[\begin{align}
& b=\dfrac{1}{a} \\
& \text{ }=\dfrac{1}{2+\sqrt{3}} \\
\end{align}\]
Since the obtained value is a complex number, we need to multiply and divide this by its complex conjugate.
I.e.,
\[\begin{align}
& b=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}} \\
& \text{ }=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3} \\
\end{align}\]
Since we have the roots $a$ and $b$, the required equation is
\[\begin{align}
& (x-a)(x-b)=0 \\
& \Rightarrow (x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=0 \\
& \Rightarrow \left( {{(x-2)}^{2}}-{{(\sqrt{3})}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}-4x+4-3=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we need to use the complex conjugates for simplifying the obtained complex numbers. So, that we can easily frame the required equation.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$ - Sum of the $n$ terms of the series; $n$ - Number of terms; $a$ - First term in the series; $r$ - Common ratio.
The sum of the infinite G.P is calculated by
${{S}_{\infty }}=\dfrac{a}{1-r}$
Here ${{S}_{\infty }}$ - Sum of the infinite terms of the series
The quadratic equation formed by two roots $a$ and $b$ is
$(x-a)(x-b)=0$
Complete step by step solution: Given series is
\[a=1+\left( \sqrt{3}-1 \right)+{{\left( \sqrt{3}-1 \right)}^{2}}+{{\left( \sqrt{3}-1 \right)}^{3}}+...\]
This is a geometric series. So, the sum of the $n$ terms is
\[\begin{align}
& a=\dfrac{1}{1-\left( \sqrt{3}-1 \right)} \\
& \Rightarrow a=\dfrac{1}{2-\sqrt{3}} \\
\end{align}\]
To simplify this complex number $2-\sqrt{3}$, multiplying and dividing this by its conjugate $2+\sqrt{3}$.
Then, we get
\[\begin{align}
& a=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}} \\
& \text{ }=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3} \\
\end{align}\]
But we have \[ab=1\]. From this, we get
\[\begin{align}
& ab=1 \\
& \Rightarrow b=\dfrac{1}{a} \\
\end{align}\]
On substituting $a$ value, we get
\[\begin{align}
& b=\dfrac{1}{a} \\
& \text{ }=\dfrac{1}{2+\sqrt{3}} \\
\end{align}\]
Since the obtained value is a complex number, we need to multiply and divide this by its complex conjugate.
I.e.,
\[\begin{align}
& b=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}} \\
& \text{ }=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3} \\
\end{align}\]
Since we have the roots $a$ and $b$, the required equation is
\[\begin{align}
& (x-a)(x-b)=0 \\
& \Rightarrow (x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=0 \\
& \Rightarrow \left( {{(x-2)}^{2}}-{{(\sqrt{3})}^{2}} \right)=0 \\
& \Rightarrow {{x}^{2}}-4x+4-3=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we need to use the complex conjugates for simplifying the obtained complex numbers. So, that we can easily frame the required equation.
Recently Updated Pages
What is the solution of the differential equation edfracdydx class 11 maths JEE_Advanced

In a GP of 3rmn terms S1 denotes the sum of first rmn class 11 maths JEE_Advanced

In an isosceles triangle ABC the coordinates of the class 11 maths JEE_Advanced

If a1+left sqrt31 right+left sqrt31 right2+left sqrt31 class 11 maths JEE_Advanced

What is the value of the integral intlimits 11 sin class 11 maths JEE_Advanced

int 44 left x + 2 right dx A 50 B 24 C 20 D None of class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

