
What is the adjoint of \[A = \left[ {\begin{array}{*{20}{c}}3&{ - 3}&4\\2&{ - 3}&4\\0&{ - 1}&1\end{array}} \right]\]?
A. \[\left[ {\begin{array}{*{20}{c}}4&8&3\\2&1&6\\0&2&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 2}&3&{ - 4}\\{ - 2}&3&{ - 3}\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}{11}&9&3\\1&2&8\\6&9&1\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1\\{ - 1}&3&3\\{ - 2}&3&{ - 3}\end{array}} \right]\]
Answer
228k+ views
Hint: We will find the cofactors of the given matrix. Then we will find the transpose matrix of the cofactor matrix to find the adjoint matrix.
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&{ - 3}&4\\2&{ - 3}&4\\0&{ - 1}&1\end{array}} \right]\].
The cofactors of A are
\[{A_{11}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - 3 \cdot 1 - 4\left( { - 1} \right)\]
\[ = 1\]
\[{A_{12}} = - \left| {\begin{array}{*{20}{c}}2&4\\0&1\end{array}} \right|\]
\[ = - \left( {2 \cdot 1 - 4 \cdot 0} \right)\]
\[ = - 2\]
\[{A_{13}} = \left| {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right|\]
\[ = 2 \cdot \left( { - 1} \right) - 3 \cdot 0\]
\[ = - 2\]
\[{A_{21}} = - \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - \left[ { - 3 \cdot 1 - 4 \cdot \left( { - 1} \right)} \right]\]
\[ = - 1\]
\[{A_{22}} = \left| {\begin{array}{*{20}{c}}3&4\\0&1\end{array}} \right|\]
\[ = \left[ {3 \cdot 1 - 4 \cdot 0} \right]\]
\[ = 3\]
\[{A_{23}} = - \left| {\begin{array}{*{20}{c}}3&{ - 3}\\0&{ - 1}\end{array}} \right|\]
\[ = - \left[ {3 \cdot \left( { - 1} \right) - \left( { - 3} \right) \cdot 0} \right]\]
\[ = 3\]
\[{A_{31}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 3}&4\end{array}} \right|\]
\[ = \left[ { - 3 \cdot 4 - \left( { - 3} \right) \cdot 4} \right]\]
\[ = 0\]
\[{A_{32}} = - \left| {\begin{array}{*{20}{c}}3&4\\2&4\end{array}} \right|\]
\[ = - \left[ {3 \cdot 4 - 2 \cdot 4} \right]\]
\[ = - 4\]
\[{A_{33}} = \left| {\begin{array}{*{20}{c}}3&{ - 3}\\2&{ - 3}\end{array}} \right|\]
\[ = \left[ {3 \cdot \left( { - 3} \right) - 2 \cdot \left( { - 3} \right)} \right]\]
\[ = - 3\]
The Adjoint of the matrix is
\[Adj\,A = \left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]
Substitute the value of cofactors
\[ = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 2}&3&{ - 4}\\{ - 2}&3&{ - 3}\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
We can find the adjoint of a matrix if the matrix is a square matrix. This means the number of rows is equal to the number of columns. The adjoint of a matrix is used to the determine inverse of that matrix. In other words, we can find the inverse of a matrix if the matrix is a square matrix.
Note: Students often do a common mistake to find the adjoint of the matrix. They forgot to transpose the cofactor matrix. To calculate the adjoint we have to find the transpose matrix of the cofactor matrix.
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&{ - 3}&4\\2&{ - 3}&4\\0&{ - 1}&1\end{array}} \right]\].
The cofactors of A are
\[{A_{11}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - 3 \cdot 1 - 4\left( { - 1} \right)\]
\[ = 1\]
\[{A_{12}} = - \left| {\begin{array}{*{20}{c}}2&4\\0&1\end{array}} \right|\]
\[ = - \left( {2 \cdot 1 - 4 \cdot 0} \right)\]
\[ = - 2\]
\[{A_{13}} = \left| {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right|\]
\[ = 2 \cdot \left( { - 1} \right) - 3 \cdot 0\]
\[ = - 2\]
\[{A_{21}} = - \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - \left[ { - 3 \cdot 1 - 4 \cdot \left( { - 1} \right)} \right]\]
\[ = - 1\]
\[{A_{22}} = \left| {\begin{array}{*{20}{c}}3&4\\0&1\end{array}} \right|\]
\[ = \left[ {3 \cdot 1 - 4 \cdot 0} \right]\]
\[ = 3\]
\[{A_{23}} = - \left| {\begin{array}{*{20}{c}}3&{ - 3}\\0&{ - 1}\end{array}} \right|\]
\[ = - \left[ {3 \cdot \left( { - 1} \right) - \left( { - 3} \right) \cdot 0} \right]\]
\[ = 3\]
\[{A_{31}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 3}&4\end{array}} \right|\]
\[ = \left[ { - 3 \cdot 4 - \left( { - 3} \right) \cdot 4} \right]\]
\[ = 0\]
\[{A_{32}} = - \left| {\begin{array}{*{20}{c}}3&4\\2&4\end{array}} \right|\]
\[ = - \left[ {3 \cdot 4 - 2 \cdot 4} \right]\]
\[ = - 4\]
\[{A_{33}} = \left| {\begin{array}{*{20}{c}}3&{ - 3}\\2&{ - 3}\end{array}} \right|\]
\[ = \left[ {3 \cdot \left( { - 3} \right) - 2 \cdot \left( { - 3} \right)} \right]\]
\[ = - 3\]
The Adjoint of the matrix is
\[Adj\,A = \left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]
Substitute the value of cofactors
\[ = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 2}&3&{ - 4}\\{ - 2}&3&{ - 3}\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
We can find the adjoint of a matrix if the matrix is a square matrix. This means the number of rows is equal to the number of columns. The adjoint of a matrix is used to the determine inverse of that matrix. In other words, we can find the inverse of a matrix if the matrix is a square matrix.
Note: Students often do a common mistake to find the adjoint of the matrix. They forgot to transpose the cofactor matrix. To calculate the adjoint we have to find the transpose matrix of the cofactor matrix.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2026 Electrochemistry Notes - Free PDF Download

JEE Advanced 2026 Revision Notes for Electricity and Magnetism - Free PDF Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced Course 2026 - Subject List, Syllabus, Course, Details

JEE Advanced Chemistry Revision Notes

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

