Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Class 12 Important Questions: CBSE Maths Chapter 8 Applications of Integrals 2024-25

ffImage
banner

Download CBSE Class 12 Maths Chapter 8 Applications of Integrals Important Questions - Free PDF Download

Chapter 8, "Applications of Integrals," in the CBSE Class 12 Mathematics curriculum,  introduces determining areas under curves and between lines and curves using integration techniques. This chapter is pivotal for understanding how integrals apply to real-world problems, especially in calculating areas bounded by various functions.


To help students in mastering these concepts, a comprehensive set of important questions for Class 12 Maths is available for free PDF download. These questions are curated to align with the latest CBSE 12 Maths syllabus, providing a valuable resource for exam preparation. By practising these questions, students can enhance their problem-solving skills and gain confidence in applying integrals to compute areas under curves and between lines and curves.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
More Free Study Material for Applications of the Integrals
icons
Ncert solutions
645.3k views 15k downloads
icons
Revision notes
icons
Ncert books

Access Class 12 Maths Chapter 8: Applications of Integrals Important Questions

Long Answer Type Questions (6 Marks)

Q.1.Find the area enclosed by a circle \[{x^2} + {y^2} = {a^2}\].

Ans: 

Drawing circle

$ {{x^2} + {y^2} = {a^2}} $

${{\text{ Center }} = (0,0)} $    

(image will be uploaded soon)                                                      

Radius $ = a$

Hence

${{\text{OA}} = {\text{OB}} = {\text{ Radius }} = a} \\ $

$ {\;{\text{A}} = (a,0)} \\ $

${{\text{B}} = (0,a)} $ 

Since, The Circle is Symmetric about X-Axis and Y-Axis.

Area of circle $ = 4 \times $ Area of Region OBAO

$ = 4 \times \int_0^a y dx$

We know that

(image will be uploaded soon)       

  ${{x^2} + {y^2} = {a^2}} $

${{y^2} = {a^2} - {x^2}} $

  ${y =  \pm \sqrt {{a^2} - {x^2}} } $

Since AOBA lies in ${1^{{\text{st }}}}$ Quadrant,

Value of $y$ is positive

$y = \sqrt {{a^2} - {x^2}} $

Now,

${\text{ Area of circle }} = 4 \times \int_0^a {\sqrt {{a^2} - {x^2}} } dx$

$  {{\text{ Using: }}\sqrt {{a^2} - {x^2}} dx = \dfrac{1}{2}\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a} + c} $

$  {\quad  = 4\left[ {\dfrac{x}{2}\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a}} \right]_0^a} $

$ { = 4\left[ {\left( {\dfrac{a}{2}\sqrt {{a^2} - {a^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{a}{a}} \right) - \left( {\dfrac{0}{2}\sqrt {{a^2} - 0}  + \dfrac{{{0^2}}}{2}{{\sin }^{ - 1}}(0)} \right)} \right]} $

$  { = 4\left[ {0 + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1) - 0 - 0} \right]} $

$  { = 4 \times \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1)} $

$  { = 4 \times \dfrac{{{a^2}}}{2} \times \dfrac{\pi }{2}} $

$  { = \pi {a^2}} $


Q. 2. Find the area of region bounded by:$\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {25 - {x^2}} } \right\}$

Ans:

We have provided

$\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {\left. {\left( {25 - {x^2}} \right)} \right\}} } \right.$

Equation of curve is $y = \sqrt {\left( {25 - {x^2}} \right)} $ or ${y^2} + {x^2} = 25$, which is a circle with center at $(0,0)$ and radius 5 

(image will be uploaded soon)       

Equation of line is $y = |x - 1|$ Consider, $y = x - 1$ and $y = \sqrt {25 - {x^2}} $

Eliminating $y$, we get $x - 1 = \sqrt {25 - {x^2}} $

$ \Rightarrow \quad {x^2} + 1 - 2x = 25 - {x^2}$

$ \Rightarrow \quad 2{x^2} - 2x - 24 = 0$

$ \Rightarrow \quad {x^2} - x - 12 = 0$

$ \Rightarrow \quad (x - 4)(x + 3) = 0$

$ \Rightarrow \quad x =  - 3,4$

The Required Area is

${ = \int_{ - 3}^4 {\sqrt {25 - {x^2}} } dx - \int_{ - 1}^1 {( - x + 1)} dx - \int_1^2 {(x - 1)} dx} $

$  { = \left[ {\dfrac{x}{2}\sqrt {25 - {x^2}}  + \dfrac{{25}}{2}{{\sin }^{ - 1}}\dfrac{x}{{\sqrt {25} }}} \right]_{ - 3}^4 - \left[ { - \dfrac{{{x^2}}}{2} + x} \right]_{ - 1}^1 - \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^2} $

$ = \left( {6 + \dfrac{{25}}{2}{{\sin }^{ - 1}}\dfrac{4}{{\sqrt {25} }}} \right) + 6 - \dfrac{{25}}{2}{\sin ^{ - 1}}\left( { - \dfrac{3}{{\sqrt {25} }}} \right) - \left( {\dfrac{{ - 1}}{2} + 1 + \dfrac{1}{2} + 1} \right) - \left( {2 - 2 - \dfrac{1}{2} + 1} \right)$

${ = \dfrac{{25}}{2}\left( {{{\sin }^{ - 1}}\dfrac{4}{{\sqrt 5 }} + {{\sin }^{ - 1}}\dfrac{3}{{\sqrt 5 }}} \right) + 2 - 2 - \dfrac{1}{2}} \\ $

${ = \dfrac{{25}}{2}{{\sin }^{ - 1}}\left[ {\dfrac{4}{{\sqrt 5 }}\sqrt {1 - \dfrac{1}{5}}  + \dfrac{3}{{\sqrt 5 }}\sqrt {1 - \dfrac{4}{5}} } \right] - \dfrac{1}{2}} $

$ { = \dfrac{{25}}{2}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)} \right] - \dfrac{1}{2}} \\ $

$ { = \dfrac{{25}}{2}{{\sin }^{ - 1}}(1) - \dfrac{1}{2}} \\ $ 

$ { = \left( {\dfrac{{25\pi }}{4} - \dfrac{1}{2}} \right){\text{ sq}}{\text{. units }}} $


Q.3. Find the area enclosed by the ellipse${\text{  }}\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$.

Ans: 

We have to find Area Enclosed by ellipse

Since Ellipse is symmetrical about both $x$ -axis and $y$ -axis

$\therefore $ Area of ellipse $ = 4 \times $ Area of OAB

$ = 4 \times \int_0^a y dx$

(image will be uploaded soon)       

We know that,

$ {\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1} \\ $

$ {\dfrac{{{y^2}}}{{{b^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}}} $

$ {\dfrac{{{y^2}}}{{{b^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}}} \\ $

$ {{y^2} = \dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} \\ $

$ {y =  \pm \sqrt {\dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} } \\ $ 

$ {y =  \pm \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} } $

(image will be uploaded soon)       

Since ${\text{OAB}}$ is in ${1^{{\text{st }}}}$ quadrant,

value of $y$ is positive

$\therefore \quad y = \dfrac{b}{a}\sqrt {{a^2} - {x^2}} $

${\text{Area of ellipse }} = 4 \times \int_0^a y  \cdot dx$

$ { = 4\int_0^a {\dfrac{b}{a}} \sqrt {{a^2} - {x^2}} dx} \\ $

$ { = \dfrac{{4b}}{a}\int_0^a {\sqrt {{a^2} - {x^2}} } dx} $

$ {{\text{ It is of form }}} \\ $

$ {\sqrt {{a^2} - {x^2}} dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a} + c} $

$ { = \dfrac{{4b}}{a}\left[ {\dfrac{x}{2}\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a}} \right]_0^a} \\ $

$ { = \dfrac{{4b}}{a}\left[ {\left( {\dfrac{a}{2}\sqrt {{a^2} - {a^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{a}{a}} \right) - \left( {\dfrac{0}{2}\sqrt {{a^2} - 0}  - \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(0)} \right)} \right]} \\ $

$ { = \dfrac{{4b}}{a}\left[ {0 + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1) - 0 - 0} \right]} $ 

$ { = \dfrac{{4b}}{a} \times \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1)} \\ $

$ { = 2ab \times {{\sin }^{ - 1}}(1)} \\ $

$ { = 2ab \times \dfrac{\pi }{2}} \\ $

$ { = \pi ab} \\ $

$ {\therefore {\text{ Required Area }} = \pi ab{\text{ square units }}} $

 

Q. 4. Find the area of region in the first quadrant enclosed by x–axis, the line y = x and the circle \[{x^2} + {y^2} = 32\].

Ans:

Equation of Given Circle is: -

$ {{x^2} + {y^2} = 32} \\ $

$ {{x^2} + {y^2} = 16 \times 2} \\ $

$ {{x^2} + {y^2} = {4^2} \times 2} \\ $

$ {{x^2} + {y^2} = {{(4\sqrt 2 )}^2}} $

(image will be uploaded soon)       

Let point where line and circle intersect be point ${\text{M}}$

Required Area = Area of shaded region

= Area OMA

 First, we find Point ${\text{M}}$

Point $M$ is intersection of line and circle

We know that

$y = x$

Putting this in Equation of Circle, we get

$ {{x^2} + {y^2} = 32} \\ $

$ {{x^2} + {x^2} = 32} \\ $

$ {2{x^2} = 32} \\ $

$ {{x^2} = 16} \\ $ 

$ {\therefore \quad x =  \pm 4} $ 

When x =4 

Y = x =4

So, points are (4, 4)

 When x = -4

Y = x = -4

So, points are (-4, -4)

As, Point M is in 1st Quadrant 

M = (4, 4)

(image will be uploaded soon)       

$\therefore \quad {\text{ Required Area}} = {\text{ Area OMP}} + {\text{ Area PMA}} = \int_0^4 {{y_1}} dx + \int_4^{4\sqrt 2 } {{y_2}} dx$

$ {{x^2} + {y^2} = {{(4\sqrt 2 )}^2}} \\ $

$ {{y^2} = {{(4\sqrt 2 )}^2} - {x^2}} \\ $

$ {y =  \pm \sqrt {{{(4\sqrt 2 )}^2} - {x^2}} } $ 

As Required Area is in first Quadrant

$\therefore {y_2} = \sqrt {{{(4\sqrt 2 )}^2} - {x^2}} $

$ {\therefore {\text{ Required Area }} = \int_0^4 x dx + \int_4^{4\sqrt 2 } {\sqrt {{{(4\sqrt 2 )}^2} - {x^2}} } dx}\\ $

$ {{\text{ Taking }}{{\text{I}}_1}{\text{ i}}{\text{.e}}{\text{. }}}\\ $

$ { = \int_0^4 x  \cdot dx} \\ $

$ { = \left[ {\dfrac{{{x^2}}}{2}} \right]_0^4} \\ $

$ { = \dfrac{{{{(4)}^2} - 0}}{2}} \\ $

$ { = \dfrac{{16}}{2}} \\ $

$ { = 8} $ 

Now solving ${{\text{I}}_2}$

${{\text{I}}_2} = \int_4^{4\sqrt 2 } {\sqrt {{{(4\sqrt 2 )}^2} - {x^2}} } dx$

It is of form

$\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + c$

 Replacing a by 4√2, we get

${{\text{I}}_2} = \left[ {\dfrac{x}{2}\sqrt {{{(4\sqrt 2 )}^2} - {x^2}}  + \dfrac{{{{(4\sqrt 2 )}^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{{4\sqrt 2 }}} \right]_4^{4\sqrt 2 }$

$ = \dfrac{{4\sqrt 2 }}{2}\sqrt {{{(4\sqrt 2 )}^2} - {{(4\sqrt 2 )}^2}}  + \dfrac{{{{(4\sqrt 2 )}^2}}}{2}{\sin ^{ - 1}}\dfrac{{4\sqrt 2 }}{{4\sqrt 2 }}$

$ - \dfrac{4}{2}\sqrt {{{(4\sqrt 2 )}^2} - {{(4)}^2}}  - \dfrac{{{{(4\sqrt 2 )}^2}}}{2}{\sin ^{ - 1}}\dfrac{4}{{4\sqrt 2 }}$

$ = 0 + \dfrac{{16 \times 2}}{2}{\sin ^{ - 1}}(1) - 2\sqrt {32 - 16}  - \dfrac{{16 \times 2}}{2}{\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt 2 }}} \right)$

$ { = 16{{\sin }^{ - 1}}(1) - 2\sqrt {16}  - 16{{\sin }^{ - 1}}\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \\ $

$ { = 16\left[ {{{\sin }^{ - 1}}(1) - {{\sin }^{ - 1}}\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] - 8} \\ $

$ { = 16\left[ {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right] - 8} \\ $

$ { = 16\left[ {\dfrac{{4\pi  - 2\pi }}{{4 \times 2}}} \right] - 8} \\ $ 

$ { = \dfrac{{16}}{8}[2\pi ] - 8} \\ $ 

$ { = 2[2\pi ] - 8} \\ $

$ { = 4\pi  - 8} $ 

Putting Value of i1 and i2 in (1)

Area = 8 + 4π – 8

          =4π

Therefore, Required Area is 4π Sq. unit.

 

Q.5. Find the area of region \[\{ \left( {{\mathbf{x}},{\text{ }}{\mathbf{y}}} \right):{\text{ }}{\mathbf{y}}{\text{ }}{\mathbf{2}} \leqslant {\mathbf{4x}},{\text{ }}{\mathbf{4x}}{\text{ }}{\mathbf{2}}{\text{ }} + {\text{ }}{\mathbf{4y}}{\text{ }}{\mathbf{2}} \leqslant {\mathbf{9}}\} .\]

Ans:

x-coordinate of point of intersection is x = 1/2 

(image will be uploaded soon)       

$ {{\text{ Required area }}} \\ $

$ { = 2\left( {\int_0^1 2 \sqrt x dx + \int_{\dfrac{1}{2}}^3 {\sqrt {\dfrac{9}{4} + {x^2}} } dx} \right)} \\ $

 $ { = 2\left[ {\dfrac{4}{3}{x^{3/2}}^{\dfrac{1}{2}} + \dfrac{x}{2}\sqrt {\dfrac{9}{4} - {x^2}}  + \left. {\dfrac{9}{8}\sin \dfrac{{2x}}{3}} \right|_2^3} \right]} \\ $

$ { = \dfrac{{\sqrt 2 }}{6} + \dfrac{9}{4}\left( {\dfrac{\pi }{2} - \sin \dfrac{1}{3}} \right){\text{ or }}\dfrac{{\sqrt 2 }}{6} + \dfrac{9}{4}{{\cos }^{ - 1}}\dfrac{1}{3}} $

 

Q. 6. Prove that the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}{{\mathbf{x}}^{\mathbf{2}}}\] and, \[{\mathbf{x}}{\text{ }} = {\text{ }}{{\mathbf{y}}^{\mathbf{2}}}\]divide the square bounded by x = 0, y = 0, x = 1, y = 1 into three equal parts.

Ans:

Let OABC be the square bounded by x = 0, y=0, x=1, y=1.

(image will be uploaded soon)       

 $A(OABC){\text{ }} = 1 \times 1 = 1{\text{ sq}}{\text{. units }}$

$ {{\text{ From, }}y = {x^2}{\text{ and x = }}{{\text{y}}^2}} \\ $

$ {x = {{({x^2})}^2}} $

${x^4} = x$

$ {{x^4} - x = 0} \\ $

$x(x^{3}-1)=0$

$x=0, x=\pm 1$

 Point of intersection of the two parabolas is (0, 0) and (1,1).

 ${\text{ Area of part III }} = \int_0^1 y dx\left( {{\text{ parabola }}{x^2} = y} \right)$

$ { = \int_0^1 {\dfrac{{{x^2}}}{{}}} dx = \left[ {\dfrac{{{x^3}}}{3}} \right]_0^1} \\ $

$  { = \dfrac{1}{3}{\text{ sq}}{\text{. units }}} $

${\text{ Area of }}I = {\text{ Area of square  -  Area of II and III }}$

$ { = 1 - \int_0^1 {\sqrt x } dx} \\ $

$ { = 1 - \dfrac{1}{3}\left[ {{x^{3/2}}} \right]_0^1} \\ $

$ { = 1 - \dfrac{1}{3}{\text{ sq}}{\text{. units }}} \\ $

$ { = \dfrac{2}{3}{\text{ sq}}{\text{. units }}} $

Area of II = Area of square - Area of I - Area of III

$ { = 1 - \dfrac{1}{3} - \dfrac{1}{3}{\text{ sq}}{\text{. units }}} \\ $

$  { = \dfrac{1}{3}{\text{ sq}}{\text{. units }}} $ 

The two curves divide the square into three equal parts.

 

Q.7. Find the area of the smaller region bounded by the ellipse \[\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} = 1\]

and straight-line \[\dfrac{x}{a} + \dfrac{y}{b} = 1\]

Ans:

The given ellipse is x2/a2 + y2/b2 = 1 and 

the line is x/a + y/b = 1.

(image will be uploaded soon)       

The sketch is as— The shaded region is the required area

$ {\therefore \quad \operatorname{ar} (ABCA) = \int_0^a {\left( {{y_1} - {y_2}} \right)} dx} \\ $

$ { = \int_0^a {(y{\text{ of the ellipse }})} dx - \int_0^a {(y{\text{ of the line }})} dx} \\ $

$ { = \int_0^a {\dfrac{b}{a}} \sqrt {{a^2} - {x^2}} dx - \int_0^a {\dfrac{{b(a - x)}}{a}} dx} $

$ { = \dfrac{b}{a}\left[ {\dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a}} \right]_0^a - \dfrac{b}{a}\left[ {ax - \dfrac{{{x^2}}}{2}} \right]_0^a} \\ $

$ { = \dfrac{b}{a}\left[ {0 + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{a}{a} - 0} \right] - \dfrac{b}{a}\left( {{a^2} - \dfrac{{{a^2}}}{2} - 0} \right)} \\ $

$ { = \dfrac{{ab}}{2} \cdot {{\sin }^{ - 1}}1 - \dfrac{b}{a} \times \dfrac{{{a^2}}}{2} = \left( {\dfrac{{\pi ab}}{4} - \dfrac{{ab}}{2}} \right)} $

${\text{ So, The required area }} = \left( {\dfrac{{\pi ab}}{4} - \dfrac{{ab}}{2}} \right){\text{ sq}}{\text{. units }}$

 

Q.8. Find the common area bounded by the circles \[{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4}}\] and \[{\left( {{\mathbf{x}}{\text{ }}--{\text{ }}{\mathbf{2}}} \right)^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4}}.\]

Ans:

Equations of given circles

\[{x^2} + {y^2} = 4..........(1)\]

\[{(x - 2)^2} + {y^2} = 4\]

Centre of the circle from equation –(i) is at origin (0, 0) and radius is 2 units.

Centre of the circle of equation (ii) is (2, 0) and at the x axis and radius is 2 units.

 Required enclosed area is shown by shaded part in figure

(image will be uploaded soon)       

 Solving equation (i) and (ii) 

Obtained intersecting points of circles are p (1, √3) and Q (1 – √3)

 Out of two circles one symmetric about x axis

 ∴ Required area = 2(Area OPACO) = 2 [Area OPCO + Area CPAC] 

= 2[Area OPCO (part of circle (x – 2)2 + y2 = 4) + Area CPAC (part of circle x2 + y2 = 4) 

 ∴ Required Area = 2 ∫ y dx (for circle (x – 2)2 + y2 = 4) + ∫ y dx (for circle x2 + y2 = 4)

 $ { = 2\left[ {\int_0^1 {\sqrt {4 - {{(x - 2)}^2}} } dx + \int_1^2 {\sqrt {4 - {x^2}} } dx} \right]} \\ $

$ { = 2\left[ {\left\{ {\left( {\dfrac{{x - 2}}{2}} \right)\sqrt {4 - {{(x - 2)}^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{(x - 2)}}{2}} \right\}_0^1} \right.} \\ $

$ {\left. { + \left\{ {\dfrac{x}{2}\sqrt {4 - {x^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{x}{2}} \right\}_1^2} \right]} $

$ { = 2\left\{ {\dfrac{{1 - 2}}{2}\sqrt {4 - {{(1 - 2)}^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{1 - 2}}{2}} \right\}} \\ $

$ { - \left\{ {\left( {\dfrac{{0 - 2}}{2}} \right)\sqrt {4 - {{(0 - 2)}^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{0 - 2}}{2}} \right\}} \\ $

$ { + \left\{ {\dfrac{2}{2}\sqrt {4 - 4}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{2}{2}} \right\}} \\ $ 

$ {\left. {\quad  - \left\{ {\dfrac{{\sqrt 3 }}{2}\sqrt {4 - 3}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{\sqrt 1 }}{2}} \right\}} \right]} $

$ = 2\left[ { - \dfrac{1}{2}\sqrt {4 + 1}  + \dfrac{4}{2}{{\sin }^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)} \right. + \sqrt {4 - 4}  - \dfrac{4}{2}{\sin ^{ - 1}}( - 1)\left. { + \dfrac{4}{2}{{\sin }^{ - 1}}1 - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{1}{2}} \right]$

$ = 2\left[ { - \dfrac{1}{2} \times \sqrt 3  - \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{1}{2} + } \right.\dfrac{4}{2}{\sin ^{ - 1}}1\left. { + \dfrac{4}{2}{{\sin }^{ - 1}}1 - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{1}{2}} \right]$

$ { = 2\left[ { - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2} \times \dfrac{\pi }{6} + \dfrac{4}{2} \times \dfrac{\pi }{2} + \dfrac{4}{2} \times \dfrac{\pi }{2} - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2} \times \dfrac{\pi }{6}} \right]} \\ $

$ { = 2\left[ { - \sqrt 3  - \dfrac{\pi }{3} + \pi  + \pi  - \dfrac{\pi }{3}} \right]} $

$ { = 2\left[ { - \sqrt 3  - \dfrac{{2\pi }}{3} + 2\pi } \right] = 2\left[ {\dfrac{{6\pi  - 2\pi }}{3} - \sqrt 3 } \right]} $

$ { = 2\left[ {\dfrac{{4\pi }}{3} - \sqrt 3 } \right] = \left( {\dfrac{{8\pi }}{3} - 2\sqrt 3 } \right){\text{ sq}}{\text{. unit}}{\text{. }}} $

 

Q.9. Using integration, find the area of the region bounded by the triangle whose vertices are

  1. (–1, 0), (1, 3) and (3, 2)

Ans:

We need line eq: for line AB, BC and AC

(image will be uploaded soon)       

points $( - 1,0)$ and $(1,3)$

eq: is $\dfrac{{y - 0}}{{3 - 0}} = \dfrac{{x - ( - 1)}}{{1 - ( - 1)}}$ eq: of line by 2-point form $\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}$

$ \Rightarrow \dfrac{y}{3} = \dfrac{{x + 1}}{2}$

$ \Rightarrow 2{\text{y}} = 3{\text{x}} + 3$

$ \Rightarrow y = \dfrac{{3x}}{2} + \dfrac{3}{2}$

(image will be uploaded soon)       

so, for line BC points $(1,3)$ and $(3,2)$

so, for line AC points $( - 1,0)$ and $(3,2)$

eq: is $\dfrac{{y - 0}}{{2 - 0}} = \dfrac{{x - ( - 1)}}{{3 - ( - 1)}}$

$ \Rightarrow \dfrac{y}{2} = \dfrac{{x + 1}}{4}$

$ \Rightarrow y = \dfrac{x}{2} + \dfrac{1}{2}$

Required area is shaded area ⇒ [Area under line AB from x

 = -1 to x = 1 + Area under BC from x = 1 to x 

= 3 - Area under AC from x = -1 to x = 3]

$ { \Rightarrow \int_{ - 1}^1 {\left( {\dfrac{{3x}}{2} + \dfrac{3}{2}} \right)} dx + \int_1^3 {\left( {\dfrac{{ - x}}{2} + \dfrac{7}{2}} \right)} dx - \int_{ - 1}^3 {\left( {\dfrac{x}{2} + \dfrac{1}{2}} \right)} dx} \\ $

$ {\left. {\left. {\left. {\left. {\left. {\left. { \Rightarrow \dfrac{3}{2} \times \dfrac{{{x^2}}}{2}} \right]_{ - 1}^1 + \dfrac{{3x}}{2}} \right]_{ - 1}^1 + \dfrac{{ - 1}}{2} \times \dfrac{{{x^2}}}{2}} \right]_1^3 + \dfrac{{7x}}{2}} \right]_1^3 - \dfrac{{{x^2}}}{{2 \times 2}}} \right]_{ - 1}^3 - \dfrac{{1x}}{2}} \right]_{ - 1}^3} $ 

 $ { \ Rightarrow \left( {\left( {\dfrac{3}{2} \times \dfrac{1}{2}} \right) - \left( {\dfrac{3}{2} \times \dfrac{1}{2}} \right)} \right) + \left( {\left( {\dfrac{{3 \times 1}}{2}} \right) - \left( {\dfrac{{3 \times ( - 1)}}{2}} \right)} \right)} \\ $

$ { + \left( {\left( {\dfrac{{ - 1}}{2} \times \dfrac{9}{2}} \right) - \left( {\dfrac{{ - 1}}{2} \times \dfrac{{{1^2}}}{2}} \right)} \right) + \left( {\dfrac{{21}}{2} - \dfrac{7}{2}} \right)} \\ $

$ { - \left( {\dfrac{9}{4} - \dfrac{1}{4}} \right) - \left( {\dfrac{3}{2} - \left( {\dfrac{{ - 1}}{2}} \right)} \right)} $

$ { \Rightarrow \left( {\dfrac{3}{4} - \dfrac{3}{4}} \right) + \left( {\dfrac{3}{2} - \left( {\dfrac{{ - 3}}{2}} \right)} \right) + \left( {\left( {\dfrac{{ - 9}}{4}} \right)} \right.} \\ $

$ {\left. { - \left( {\dfrac{{ - 1}}{4}} \right)} \right) + \left( {\dfrac{{14}}{2}} \right) - \left( {\dfrac{8}{4}} \right) - \left( {\dfrac{3}{2} + \dfrac{1}{2}} \right)} $ 

$ { = (0) + \left( {\dfrac{6}{2}} \right) + \left( {\dfrac{{ - 8}}{4}} \right) + \left( {\dfrac{{14}}{2}} \right) - \left( {\dfrac{8}{4}} \right) - \left( {\dfrac{4}{2}} \right)} $

$ { = 0 + 3 - 2 + 7 - 2 - 2 = 4{\text{ sq}}{\text{. units}}{\text{. }}} $

  1. (–2, 2) (0, 5) and (3, 2)

Ans: We have to find the area of the triangle whose vertices are A (– 2,2), B (0, 5), C (3, 2)

$ {{\text{ The equation of }}AB{\text{ , }}} \\ $

$ {{\text{y}} = {{\text{y}}_1} = \left( {\dfrac{{{{\text{y}}_2} - {{\text{y}}_1}}}{{{{\text{x}}_2} - {{\text{x}}_1}}}} \right)\left( {{\text{x}} - {{\text{x}}_1}} \right)} \\ $

$ {y - 2 = \left( {\dfrac{{5 - 2}}{{0 + 2}}} \right)(x + 2)} \\ $

$ {y - 2 = \dfrac{3}{2}(x + 2)} \\ $

$ {Y = \dfrac{3}{2}x + 5 \ldots {\text{ }}...{\text{ (i) }}} $

The equation of BC,

$y-5=(\frac{2-5}{3-0})(x-0)$

$ { = \dfrac{{ - 3}}{3}(x - 0)} \\ $

$ {y - 5 =  - x} \\ $

$ {Y = 5 - x \ldots {\text{ (ii) }}} \\ $

$ {{\text{ The equation of }}AC{\text{ , }}} \\ $

$ {{\text{y}} - 2 = \left( {\dfrac{{2 - 2}}{{3 + 2}}} \right)({\text{x}} + 2)} \\ $

$ {y - 2 = 0} \\ $ 

$ {{\text{y}} = 2 \ldots {\text{ (iii) }}} $ 

Now the required area $(A) = $

((Area between line A B and $x$ -axis) - (Area between line A C and $x$ - axis) from $x =  - 1$ to $x = 0)$

$ + [$ (Area between line ${\text{BC}}$ and ${\text{x}}$ -axis) - (Area between line ${\text{AC}}$ and ${\text{x}}$ -axis) from ${\text{x}} = 0$ to $x = 3$ ]

 Say, Area $A = {A_1} + {A_2}$

 $A_{1}=\int_{-2}^{0}[(\frac{3x}{2}+5)]dx$

$ { = \int_{ - 2}^0 {\left[ {\dfrac{{3x}}{2} + 5 - 2} \right]} dx} \\ $

$ { = \int_{ - 2}^0 {\left( {\dfrac{{3x}}{2} + 3} \right)} dx} \\ $

$ { = 3\left( {\dfrac{{{x^2}}}{4} + x} \right)_{ - 2}^0} \\ $

$ { = 3\left[ {(0) - \left( {\dfrac{4}{4} - 2} \right)} \right]} \\ $

$ { = 3} $ 

$ {{\text{ And, }}{A_2} = \int_0^3 {\left( {{y_2} - {y_3}} \right)} dx} \\  $ 

$ { = \int_0^3 {\left[ {(5 - x) - 2} \right]} dx} \\ $

$ { = \int_0^3 {\left[ {5 - x - 2} \right]} dx} \\ $

$ { = \int_0^3 {\left( {3 - x} \right)} dx} \\ $

$ { = \left( {3x - \dfrac{{{x^2}}}{2}} \right)_0^3} \\ $ 

$ { = \left[ {9 - \dfrac{9}{2}} \right] = \dfrac{9}{2}} $ 

So, the enclosed area of the triangle is 

\[3 + \dfrac{9}{2} = \dfrac{{15}}{2}\] sq. Units. 

 

Q.10. Using integration, find the area bounded by the lines.

(I) \[{\mathbf{x}}{\text{ }} + {\text{ }}{\mathbf{2y}}{\text{ }} = {\text{ }}{\mathbf{2}},{\text{ }}{\mathbf{y}}{\text{ }}--{\text{ }}{\mathbf{x}}{\text{ }} = {\text{ }}{\mathbf{1}}{\text{ }}{\mathbf{and}}{\text{ }}{\mathbf{2x}}{\text{ }} + {\text{ }}{\mathbf{y}}{\text{ }}--{\text{ }}{\mathbf{7}}{\text{ }} = {\text{ }}{\mathbf{0}}\]

Ans:

Given, x + 2y = 2 ...(I) 

 y – x = 1 ...(ii)

 2x + y = 7 ...(iii) 

 On plotting these lines, we have

(image will be uploaded soon)       

 Area of required region

$ = \int_{ - 1}^3 {\dfrac{{7 - y}}{2}} dy - \int_{ - 1}^1 {(2 - 2y)} dy - \int_1^3 {(y - 1)} dy$

$ = \dfrac{1}{2}\left[ {7y - \dfrac{{{y^2}}}{2}} \right]_{ - 1}^3 - \left[ {2y - {y^2}} \right]_{ - 1}^1 - \left[ {\dfrac{{{y^2}}}{2} - y} \right]_1^3$

$ = \dfrac{1}{2}\left( {21 - \dfrac{9}{2} + 7 + \dfrac{1}{2}} \right) - (2 - 1 + 2 + 1) - \left( {\dfrac{9}{2} - 3 - \dfrac{1}{2} + 1} \right)$

$ = 12 - 4 - 2 = 6$ sq. units

(ii) \[{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{4x}}{\text{ }} + {\text{ }}{\mathbf{5}},{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{5}}{\text{ }}--{\text{ }}{\mathbf{x}}{\text{ }}{\mathbf{and}}{\text{ }}{\mathbf{4y}}{\text{ }}--{\text{ }}{\mathbf{x}}{\text{ }} = {\text{ }}{\mathbf{5}}.\]

Ans:

We have lines

$ {y = 4x + 5} \\ $ 

$ {y = 5 - x} \\ $

$ {4y = x + 5} $

 Solving(i)and(ii),we get point of intersection$(0,5)$Solving(ii)and(iii),we get point of intersection(3,2)

Solving(i)and(iii),we get point of intersection$(-1,1) 

These lines are plotted on coordinate plane as shown in the following figure.

(image will be uploaded soon)       

From the figure, area of the shaded region

$ {A = \int_{ - 1}^0 {(4x + 5)} dx + \int_0^3 {(5 - x)} dx - \int_{ - 1}^3 {\dfrac{{x + 5}}{4}} dx} $

$ { = \left[ {\dfrac{{4{x^2}}}{2} + 5x} \right]_{ - 1}^0 + \left[ {5x - \dfrac{{{x^2}}}{2}} \right]_0^3 - \dfrac{1}{4}\left[ {\dfrac{{{x^2}}}{2} + 5x} \right]_{ - 1}^3} \\ $

$ { = [0 - 2 + 5] + \left[ {15 - \dfrac{9}{2} - 0} \right] - \dfrac{1}{4}\left[ {\dfrac{9}{2} + 15 - \dfrac{1}{2} + 5} \right]} \\ $

$ { = 3 + \dfrac{{21}}{2} + \dfrac{1}{4} \cdot 24 = \dfrac{{15}}{2}{\text{ sq}}{\text{. units }}} $

 

Q. 11. Find the area of the region \[\{ \left( {{\mathbf{x}},{\text{ }}{\mathbf{y}}} \right):{\text{ }}{\mathbf{x}}{\text{ }}{\mathbf{2}}{\text{ }} + {\text{ }}{\mathbf{y}}{\text{ }}{\mathbf{2}} \leqslant {\mathbf{1}} \leqslant {\mathbf{x}}{\text{ }} + {\text{ }}{\mathbf{y}}\} .\]

Ans:

Given curves are 

${(x, y): {x_2} + {y_2}, ≤ 1 ≤ x + y}$.

(image will be uploaded soon)       

$ {{\text{ Hence, the required area }}} \\ $

$ { = \int_0^1 {(C - L)} dx} \\ $

$ { = \int_0^1 {\left( {\sqrt {1 - {x^2}}  - (1 - x)} \right)} dx} \\ $

$ { = \left( {\dfrac{{x\sqrt {1 - {x^2}} }}{2} + \dfrac{1}{2}{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right) - x + \dfrac{{{x^2}}}{2}} \right)_0^1} \\ $

$ { = \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\left( {\dfrac{1}{2}} \right) - 1 + \dfrac{1}{2}} \right)} \\ $ 

$ { = \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\left( {\dfrac{1}{2}} \right) - \dfrac{1}{2}} \right)} \\ $

$ { = \dfrac{1}{2}\left( {\dfrac{\pi }{6} - 1} \right){\text{ sq}}{\text{.u}}{\text{. }}} $


Q. 12. Find the area of the region bounded by \[{\mathbf{y}}{\text{ }} = {\text{ }}\left| {{\mathbf{x}}{\text{ }}--{\text{ }}{\mathbf{1}}} \right|{\text{ }}{\mathbf{and}}{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{1}}.\]

Ans:

Area between two Curve 

If we have two functions .Area between two curves are

(image will be uploaded soon)       

Required Area = ½ × Base × Height

                          =1/2 ×2×1

                               =1

(image will be uploaded soon)       

 

Q.13. Find the area enclosed by the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{sin}}{\text{ }}{\mathbf{x}}\]

between x = 0 and x =\[\dfrac{{3\pi }}{2}\] and x-axis.

Ans:

(image will be uploaded soon)       

Area required = Area of OAB + Area of BC

$  {{\text{ Area OAB }}} \\ $

$  { = \int_0^\pi  y dx} \\ $

$  {y \to \sin x} \\ $

$  { = \int_0^\pi  {\sin } xdx} \\ $

$  { = [ - \cos x]_0^\pi } \\ $

$  { =  - [\cos \pi  - \cos 0]} \\ $

$  { =  - [ - 1 - 1]} \\ $

$  { =  - [ - 2]} \\ $

$  { = 2} $

Area BC

$ = \int_\pi ^{2\pi } y dx$

$ = \int_\pi ^{2\pi } {\sin } xdx$

$ = [ - \cos x]_\pi ^{\dfrac{{3\pi }}{2}}$

$ =  - [\cos \dfrac{{3\pi }}{2} - \cos \pi ]$

$ =  - [0 - ( - 1)]$

$ =  - 1$

Since area cannot be negative,

Area ${\text{BC}} = 1$

$  {{\text{ Hence, }}}\\ $

$  {{\text{ Area Required }}},{ = {\text{ Area }}OAB + {\text{ Area }}BC} \\ $

$  { = 2 + 1} \\ $

$  { = 3} $ 


Q. 14. Find the area bounded by semi-circle \[{\mathbf{y}} = {\mathbf{25}} - {{\mathbf{x}}^{\mathbf{2}}}\]and x-axis.

Ans:

Let the Area bounded By Semi-circle

(image will be uploaded soon)       

$  {\therefore A = \quad 2xy}\\ $

$  {\qquad {\text{ }}\therefore \dfrac{{dA}}{{dx}}},{ = 2x \cdot \dfrac{1}{{2\sqrt {25 - {x^2}} }} \cdot ( - 2x) + \sqrt {25 - {x^2}} },{ \cdot 2} \\ $

$  { = 2x\sqrt {25 - {x^2}} }\\ $

$  { = \dfrac{{2\left( {25 - {x^2}} \right) - 2{x^2}}}{{\sqrt {25 - {x^2}} }}}\\ $

$  { = \dfrac{{dA}}{{dx}} = },{0,{\text{ when }}x = y = \dfrac{{5\sqrt 2 }}{2}} $

$  {{\text{ By the First Derivative Test, the inscribed rectangle of maximum area has vertices }}} \\ $

$  {\left( { \pm \dfrac{{5\sqrt 2 }}{2},0} \right),{\text{ and }}\left( { \pm \dfrac{{5\sqrt 2 }}{2},\dfrac{{5\sqrt 2 }}{2}} \right)} \\ $

$  {\therefore {\text{ The length }} = 5\sqrt 2 ,\quad {\text{ the width }} = \dfrac{{5\sqrt 2 }}{2}} $

${\text{ The length }} = {\mathbf{5}}\sqrt {\mathbf{2}} ,\quad {\text{ the width }} = \dfrac{{{\mathbf{5}}\sqrt {\mathbf{2}} }}{{\mathbf{2}}}$

 

Q. 15. Find area of region given by \[\{ \left( {{\mathbf{x}},{\text{ }}{\mathbf{y}}} \right):{\text{ }}{{\mathbf{x}}^{\mathbf{2}}}\; \leqslant {\mathbf{y}} \leqslant \left| {\mathbf{x}} \right|\} .\]

Ans:

The required area is bounded between two curves $y = x^2$ and $y = |x|$.  

Both of these curves are symmetric about the y-axis and shaded region in the fig. shows the region whose area is required.

 Therefore, the required area

(image will be uploaded soon)       

 $A = 2 \times $ Area of the region ${R_1}$

Now, to find the point of intersection of the curves $y = |x|$ and $y = {x^2}$, we solve them simultaneously.

Clearly, the region ${R_1}$ is in the first quadrant, where $x > 0$,

$\therefore |x| = x$ or $\quad y = x$  ...(i)

 $y = {x^2}$

and

Solving these two equations, we get

$x = {x^2}$

or either $x = 0$ or $x = 1$

The limits are, when $x = 0,y = 0$ and when $x = 1,y = 1$. So, the points of intersection of the curves are ${\text{O}}(0,0)$ and ${\text{A}}(1,1)$.

Now, required Area $ = 2 \times $ area of line region ${R_1}$

(Tex translation failed) of the line $y = x$

$ - \left( y \right.$ of the parabola $\left. {\left. {y = {x^2}} \right)} \right]dx$

$ = 2\int_0^1 {\left( {x - {x^2}} \right)} dx = 2\left[ {\dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{3}} \right]_0^1$

$ = 2\left[ {\dfrac{1}{2} - \dfrac{1}{3}} \right] = \dfrac{1}{3}$ Sq. unit

 

Q.16. Find area of smaller region bounded by ellipse \[\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{4} = 1\]

 and straight line \[{\mathbf{2x}}{\text{ }} + {\text{ }}{\mathbf{3y}}{\text{ }} = {\text{ }}{\mathbf{6}}.\]

Ans:

(image will be uploaded soon)       

 $ {{\text{ Area of shaded region }}} \\ $

 $ { = \int_0^3 {\left\{ {\dfrac{2}{3}\sqrt {9 - {x^2}}  - \dfrac{2}{3}(3 - x)} \right\}} dx} \\ $

$ { = \dfrac{2}{3}\left[ {\dfrac{x}{2}\sqrt {9 - {x^2}}  + \dfrac{9}{2}{{\sin }^{ - 1}}\dfrac{x}{3} + \dfrac{{{{(3 - x)}^2}}}{2}} \right]_0^3} \\ $

$ { = \dfrac{2}{3}\left[ {\left( {0 + \dfrac{9}{2} \cdot \dfrac{\pi }{2} + 0} \right) - \left( {0 + 0 + \dfrac{9}{2}} \right)} \right]} \\ $

$ { = \dfrac{2}{3}\left( {9\dfrac{\pi }{4} - \dfrac{9}{2}} \right)} \\ $

$ { = 3\left( {\dfrac{\pi }{2} - 1} \right){\text{sq}} \cdot {\text{ unit}}{\text{. }}} $

 

Q.17. Find the area of region bounded by the curve \[{{\mathbf{x}}^2}{\text{ }} = {\text{ }}{\mathbf{4y}}\]and line \[{\mathbf{x}}{\text{ }} = {\text{ }}{\mathbf{4y}}{\text{ }}--{\text{ }}{\mathbf{2}}.\]

Ans:

(image will be uploaded soon)       

Points of intersection are (2, 1) and (-1, 1/4)

Required Area of region (ΔOABO)

$  { = \int_{ - 1}^2 {\dfrac{{x + 2}}{4}} dx - \int_{ - 1}^2 {\dfrac{{{x^2}}}{4}} dx} \\ $

$  { = \dfrac{1}{4}\left[ {\dfrac{{{{(x + 2)}^2}}}{2} - \dfrac{{{x^3}}}{3}} \right]_{ - 1}^2} \\ $

$  { = \dfrac{1}{4}\left[ {\dfrac{{16}}{3} - \dfrac{5}{6}} \right] = \dfrac{{27}}{{24}}{\text{ sq}}{\text{.units }}} \\ $

$  { = \dfrac{9}{8}{\text{ squnits }}} $ 


Q. 18. Using integration find the area of region in first quadrant enclosed by x-axis, the line \[{\mathbf{x}} = \surd {\mathbf{3y}}\]and the circle \[{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4}}.\]

Ans:

Given Equation of circle

(image will be uploaded soon)       

$x^{2}+y^{2}=4$

$  {{x^2} + {y^2} = {{(2)}^2}} $

$\therefore $ Radius $r = 2$

So, point $A$ is $(2,0)$

and point ${\text{B}}$ is $(0,2)$

 Let line $x = \sqrt 3 y$ intersect the circle at point $C$

Therefore, we have to find Area of AOC

 Finding point ${\text{C}}$

(image will be uploaded soon)       

We know that

$x = \sqrt 3 y$

Putting value of ${\text{x}}$ in equation of circle

${x^2} + {y^2} = 4$

$ {{{(\sqrt 3 y)}^2} + {y^2} = 4} \\ $

$ {3{y^2} + {y^2} = 4} \\ $

$ {4{y^2} = 4} \\ $

$ {{y^2} = 1} \\ $

$ {\therefore \quad y =  \pm 1} $

Now, finding value of $x$

$  {{\text{ When }}y = 1} \\ $ 

$  {x = \sqrt 3 y} \\ $

$  {x = \sqrt 3  \times 1} \\ $

$ {x = \sqrt 3 } $

$ {{\text{ When }}y =  - 1} \\ $

$ {x = \sqrt 3 y} \\ $

$ {x = \sqrt 3  \times  - 1} \\ $

$ {x =  - \sqrt 3 } $

$ {{\text{ Since point C is in}}{{\text{ }}^{{\text{st}}}}{\text{ quadrant }}} \\ $ 

$ {\therefore {\text{C is }}(\sqrt 3 ,1)} $

(image will be uploaded soon)       

Area OAC

(image will be uploaded soon)       

Area of $OAC = $ Area $OCX + $ Area XCA

 Area OCX

Area ${\text{OCX}} = \int_0^{\sqrt 3 } y dx$

$y \to $ Equation of line

Now,

(image will be uploaded soon)       

$  {x = \sqrt 3 y} \\ $

$  {y = \dfrac{x}{{\sqrt 3 }}} $ 

$  {{\text{ Therefore, }}} \\ $

$  {{\text{ Area OCX}} = \int_0^{\sqrt 3 } y dx} \\ $

$  { = \int_0^{\sqrt 3 } {\dfrac{x}{{\sqrt 3 }}} dx} \\ $

$  { = \dfrac{1}{{\sqrt 3 }}\int_0^{\sqrt 3 } x dx} \\ $

$  { = \dfrac{1}{{\sqrt 3 }}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^{\sqrt 3 }} \\ $

$  { = \dfrac{1}{{2\sqrt 3 }}\left[ {{x^2}} \right]_0^{\sqrt 3 }} \\ $

$  { = \dfrac{1}{{2\sqrt 3 }}\left[ {{{(\sqrt 3 )}^2} - {{(0)}^2}} \right]} $ 

$\frac{1}{2\sqrt{3}}[3]$

$=\frac{\sqrt{3}}{2}$

Area XCA

Area $ \times CA = \int_{\sqrt 3 }^2 y dx$

$y \to $ Equation of circle

Now,

$ {{x^2} + {y^2} = 4} \\ $

$  {{y^2} = 4 - {x^2}} \\ $

$  {y =  \pm \sqrt {4 - {x^2}} } $ 

Since XCA is in ${1^{{\text{st }}}}$ Quadrant,

$ {{\text{ Value of }}y{\text{ will be positive }}} \\ $

$  {\therefore y = \sqrt {4 - {x^2}} }\\ $

$  {{\text{ Area  XCA}}},{ = \int_{\sqrt 3 }^2 {\sqrt {4 - {x^2}} } dx} \\ $ 

$  { = \int_{\sqrt 3 }^2 {\sqrt {{{(2)}^2} - {x^2}} } dx} $

It is of form

$\sqrt {{a^2} - {x^2}} dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + c$

Replacing a by 2, we get

$ = \left[ {\dfrac{1}{2}x\sqrt {{{(2)}^2} - {x^2}}  + \dfrac{{{{(2)}^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{2}} \right]_{\sqrt 3 }^2$

$ = \left[ {\dfrac{1}{2}x\sqrt {4 - {x^2}}  + 2{{\sin }^{ - 1}}\dfrac{x}{2}} \right]_{\sqrt 3 }^2$

$ = \dfrac{1}{2}(2)\sqrt {4 - {2^2}}  + 2{\sin ^{ - 1}}\dfrac{2}{2} - \dfrac{1}{2}(\sqrt 3 )\sqrt {4 - {{(\sqrt 3 )}^2}}  - 2{\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$

$ { = 0 + 2{{\sin }^{ - 1}}(1) - \dfrac{{\sqrt 3 }}{2}\sqrt {4 - 3}  - 2{{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \\ $

$ { = 2{{\sin }^{ - 1}}(1) - \dfrac{{\sqrt 3 }}{2} - 2{{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + 2\left[ {{{\sin }^{ - 1}}(1) - {{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \right]} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + 2\left[ {\dfrac{\pi }{2} - \dfrac{\pi }{3}} \right]} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + 2\left[ {\dfrac{\pi }{6}} \right]} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + \dfrac{\pi }{3}} $

$ {{\text{ Therefore, }}} \\ $

$ {{\text{ Area of OAC}} = {\text{ Area OCX}} + {\text{ Area XCA }}} $

$ = \dfrac{{\sqrt 3 }}{2} - \dfrac{{\sqrt 3 }}{2} + \dfrac{\pi }{3}$

$ = \dfrac{\pi }{3}$ square units

$\therefore $ Required Area $ = \dfrac{\pi }{3}$ square units

 

Q.19. Find smaller of two areas bounded by the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}\left| {\mathbf{x}} \right|{\text{ }}{\mathbf{and}}{\text{ }}{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{8}}\].

Ans:

Let the Parabola be:

(image will be uploaded soon)       

$  {{\text{ The required area }}} \\ $

$  { = \int_{ - 2}^2 {\sqrt {8 - {x^2}} } dx - \int_{ - 2}^0 {} xdx + \int_0^2 x dx} \\ $

$  { = 2\int_0^2 {\sqrt {8 - {x^2}} } dx - \left[ {\dfrac{{{x^2}}}{2}} \right]_{ - 2}^0 - \left[ {\dfrac{{{x^2}}}{2}} \right]_0^2} \\ $

$  { = 2\left[ {\dfrac{x}{2}\sqrt {8 - {x^2}}  + \dfrac{8}{2}{{\sin }^{ - 1}}\dfrac{x}{{2\sqrt 2 }}} \right]_0^2 - \dfrac{4}{2} - 2} \\ $

$  { = 2\left[ {2 + 4 \cdot \dfrac{\pi }{4}} \right] - 4 = 2\pi sq.unit} $ 

 

Q. 20. Find the area lying above x-axis and included between the \[{\mathbf{circle}}{\text{ }}{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{8x}}\]and the parabola \[{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4x}}.\]

Ans:

We have, given equations

${x^2} + {y^2} = 8x \ldots .$ (i)

and ${y^2} = 4x\quad  \ldots  \ldots  \ldots .$ (ii)

 

Equation (1) can be written as

${(x - 4)^2} + {y^2} = {(4)^2}$

 

So, equation (I) represents a circle with center $(4,0)$ and radius 4. 

Again, clearly equation (ii) represents parabola with vertex $(0,0)$ and axis as $x$ -axis. 

The curve (i) and (ii) are shown in figure and the required region is shaded. On solving equation (i) and (ii) we have points of intersection $0(0,0)$ and $A(4,4),C(4, - 4)$

 

 Now, we have to find the area of region bounded

(image will be uploaded soon)       

by $(i)$ and $(ii){\text{ }}$ above $x$ -axis. So required region is OBAO.

 Now, area of OBAO is

$A{\text{ }} = \int_0^4 {\left( {\sqrt {8x - {x^2}}  - \sqrt {4x} } \right)} dx = \int_0^4 {\left( {\sqrt {{{(4)}^2} - {{(x - 4)}^2}}  - 2\sqrt x } \right)} dx$

$ = \left[ {\dfrac{{(x - 4)}}{2}\sqrt {{{(4)}^2} - {{(x - 4)}^2}}  + \dfrac{{16}}{2}{{\sin }^{ - 1}}\dfrac{{(x - 4)}}{4} - 2 \times \dfrac{{2{x^{3/2}}}}{3}} \right]_0^4$

$  { = \left[ {8{{\sin }^{ - 1}}0 - \dfrac{4}{3}{{(4)}^{\dfrac{3}{2}}}} \right] - \left[ {8{{\sin }^{ - 1}}( - 1) - 0} \right]} \\ $

$  { = \left( {8 \times 0 - \dfrac{4}{3} \times 8} \right) - \left( {8 \times  - \dfrac{\pi }{2}} \right)} \\ $

$  { =  - \dfrac{{32}}{3} + 4\pi  = \left( {4\pi  - \dfrac{{32}}{3}} \right){\text{ sq}}{\text{.units }}} $

 

Q. 21. Using integration, find the area enclosed by the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{cos}}{\text{ }}{\mathbf{x}},{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{sin}}{\text{ }}{\mathbf{x}}\]

and x-axis in the interval (0, π/2).

Ans: The area bounded by the curves are in the chart below:

(image will be uploaded soon)       

 The previous version of my response had the area corresponding to ${\text{C}}$. However, after reading the question again, I guess the required area $ = {\text{A}} + {\text{B}}$

$AreaA = \int_0^{\dfrac{\pi }{4}} {(\cos x - \sin x)} .dx = [\sin x + \cos x]_0^{\dfrac{\pi }{4}}$

$A = \left[ {\sin \dfrac{\pi }{4} + \cos \dfrac{\pi }{4} - \sin 0 - \cos 0} \right] = \left[ {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 0 - 1} \right] = [\sqrt 2  - 1]$

$\quad  = \int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {(\sin x - \cos x)}  \cdot dx = {[ - \cos x - \sin x]_{{{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}}}}$

$B = \left[ { - \cos \dfrac{\pi }{2} - \sin \dfrac{\pi }{2} + \cos \dfrac{\pi }{4} + \sin \dfrac{\pi }{4}} \right] = \left[ { - 0 - 1 + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + 0 + 1} \right] = [\sqrt 2 $

${\text{ Required Area }} = A + B = [\sqrt 2  - 1] + [\sqrt 2  - 1] = 2[\sqrt 2  - 1]$

Area C: (retained for academic exercise, if someone interested)

The required area $ = [y = \sin x]_0^{\dfrac{\pi }{4}} + [y = \cos x]_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$

Due to the symmetry of $\sin x$ and $\cos x$ functions between $\left( {0,\dfrac{\pi }{4}} \right)$ and $\left( {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right)$ :

$ = 2*\int_0^{\dfrac{\pi }{4}} {\sin } x.dx = 2*[ - \cos x]_0^{\dfrac{\pi }{4}}$

$ = 2*\left[ { - \cos \dfrac{\pi }{4} + \cos 0} \right] = 2*\left[ {1 - \dfrac{1}{{\sqrt 2 }}} \right] = 2 - \sqrt 2 $

 

Q. 22. Sketch the graph \[{\mathbf{y}}{\text{ }} = {\text{ }}\left| {{\mathbf{x}}{\text{ }}--{\text{ }}{\mathbf{5}}} \right|\]. Evaluate \[\int\limits_0^6 {|x - 5|} dx\].

Ans:

We have,

$y = |x - 5|$ intersect $x = 0$ and $x = 1$ at $(0,5)$ and $(1,4)$

Now,

$y = |x - 5|$

$ =  - (x - 5)$ For all $x \in (0,1)$

Integration represents the area enclosed by the graph from $x = 0$ to $x = 1$

(image will be uploaded soon)       

$  {A = \int_0^6 | y|dx} \\ $

$  { = \int_0^6 | x - 5|dx} \\ $

$ { = \int_0^6  -  (x - 5)dx} \\ $

$ { =  - \int_0^6 {(x - 5)} dx} \\$ 

$ { =  - \left[ {\dfrac{{{x^2}}}{2} - 5x} \right]_0^6} \\ $

$ { =  - \left[ {\left( {\dfrac{{36}}{2} - 30} \right) - (0 - 0)} \right]} \\ $

$  { = 12{\text{sq}} \cdot {\text{ units }}} $


Q.23. Find area enclosed between the curves\[,{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{4x}}{\text{ }}{\mathbf{and}}{\text{ }}{{\mathbf{x}}^{\mathbf{2}}} = {\text{ }}{\mathbf{6y}}\]

Ans: Here, ${x^2} = 6y$ is a parabola

And,

$y = 4x$ is a line

which intersects the parabola at points $A$ and $B$

We need to find Area of shaded region

First, we find Points A and B

(image will be uploaded soon)       

Finding points $A$ and $B$

Points $A{\text{ }}B$ are the intersection of curve and line

Putting in equation of curve, we get

$  {{x^2} = 6y} \\ $

$  {{{(\dfrac{y}{4})}^2} = 4y} \\ $

$  {\dfrac{{{y^{^2}}}}{{16}} = 4y} \\ $

$  {{y^2} - 64y = 0} \\ $

$  {{y^2} = 64y} \\ $

$  {y = 64} \\ $

$  {} $

y=64, y=0

 For y = 64 

$  {x = \dfrac{y}{4}} \\ $

$  {x = \dfrac{{64}}{4}} \\$ 

$  {x = 16} \\ $

$  {{\text{ So, point is }}\left( {16,64} \right)} $

For $y = 0$

$x = \dfrac{y}{4}$

$x = 0$

So, point is $(0,0)$ 

Point  is in 1stQuadrant (16,64)

 

Q.24.Using integration, find the area of the following region: 

$  {\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {5 - {x^2}} } \right\}} $

Ans:

We have provided

$\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {\left. {\left( {5 - {x^2}} \right)} \right\}} } \right.$

Equation of curve is $y = \sqrt {\left( {5 - {x^2}} \right)} $ or ${y^2} + {x^2} = 5$, which is a circle with center at $(0,0)$ 

and radius $5/2$.

(image will be uploaded soon)       

Equation of line is $y = |x - 1|$ Consider, $y = x - 1$ and $y = \sqrt {5 - {x^2}} $

Eliminating $y$, we get $x - 1 = \sqrt {5 - {x^2}} $

$ \Rightarrow \quad {x^2} + 1 - 2x = 5 - {x^2}$

$ \Rightarrow \quad 2{x^2} - 2x - 4 = 0$

$ \Rightarrow \quad {x^2} - x - 2 = 0$

$ \Rightarrow \quad (x - 2)(x + 1) = 0$

$ \Rightarrow \quad x = 2, - 1$

 

The Required Area is

 $ { = \int_{ - 1}^2 {\sqrt {5 - {x^2}} } dx - \int_{ - 1}^1 {( - x + 1)} dx - \int_1^2 {(x - 1)} dx} \\ $

 $ { = \left[ {\dfrac{x}{2}\sqrt {5 - {x^2}}  + \dfrac{5}{2}{{\sin }^{ - 1}}\dfrac{x}{{\sqrt 5 }}} \right]_{ - 1}^2 - \left[ { - \dfrac{{{x^2}}}{2} + x} \right]_{ - 1}^1 - \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^2} $

$ = \left( {1 + \dfrac{5}{2}{{\sin }^{ - 1}}\dfrac{2}{{\sqrt 5 }}} \right) + 1 - \dfrac{5}{2}{\sin ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 5 }}} \right) - \left( {\dfrac{{ - 1}}{2} + 1 + \dfrac{1}{2} + 1} \right) - \left( {2 - 2 - \dfrac{1}{2} + 1} \right)$

$ { = \dfrac{5}{2}\left( {{{\sin }^{ - 1}}\dfrac{2}{{\sqrt 5 }} + {{\sin }^{ - 1}}\dfrac{1}{{\sqrt 5 }}} \right) + 2 - 2 - \dfrac{1}{2}} \\ $

$ { = \dfrac{5}{2}{{\sin }^{ - 1}}\left[ {\dfrac{2}{{\sqrt 5 }}\sqrt {1 - \dfrac{1}{5}}  + \dfrac{1}{{\sqrt 5 }}\sqrt {1 - \dfrac{4}{5}} } \right] - \dfrac{1}{2}} $

$ { = \dfrac{5}{2}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)} \right] - \dfrac{1}{2}} \\ $

$ { = \dfrac{5}{2}{{\sin }^{ - 1}}(1) - \dfrac{1}{2}} \\ $

$ { = \left( {\dfrac{{5\pi }}{4} - \dfrac{1}{2}} \right){\text{ sq}}{\text{. units }}} $


Important Formulas from Class 12 Maths Chapter 8 Applications of Integrals

Formula

Description

Area under a Curve

$A = \int_{a}^{b} f(x) \,dx$ 


where, $A$ = area under the curve, $f(x)$ = function representing the curve , $a, b$ = limits of integration on the x-axis.


This integral calculates the total accumulated value of $ f(x) $ over the interval $[a, b]$.

Area between Two Curves

$A = \int_{a}^{b} \left[ f(x) - g(x) \right] dx$


Where, $f(x)$ is the upper function , $g(x)$ is the lower function  

$a, b$ are the limits of integration.


This integral calculates the enclosed area by subtracting the lower curve from the upper curve.

Area under a Parametric Curve

The area under a parametric curve given by $x=f(t)x = f(t)$ and $y=g(t)y = g(t)$ for tt in the interval [a,b][a, b] is:


$A=∫abydxdt dtA = \int_{a}^{b} y \frac{dx}{dt} \, dt$


where, $y=g(t)y = g(t)$ and $dxdt=f′(t)\frac{dx}{dt} = f'(t)$


This integral computes the total area by summing up infinitesimal vertical strips formed by the parametric equations.

Area in Polar Coordinates

The area enclosed by a curve given in polar coordinates $r=f(θ)r = f(\theta)$ over the interval $θ∈[α,β]\theta \in [\alpha, \beta]$ is:


$A=12∫αβr2 dθA = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \, d\theta$


where,
$r=f(θ)r = f(\theta)$ is the polar function and $α,β\alpha, \beta$ are the limits of integration in radians.


This formula calculates the area by summing up infinitesimal sectors of the polar curve.

Volume of Solid of Revolution (Disc Method)

$V=π∫ab[f(x)]2 dxV = \pi \int_{a}^{b} [f(x)]^2 \,dx$


where,
f(x)f(x) is the function being revolved around the x-axis and a,ba, b are the limits of integration.


For revolution around the y-axis, the formula is,

$V=π∫cd[g(y)]2 dyV = \pi \int_{c}^{d} [g(y)]^2 \, dy$


where $g(y)g(y)$ is expressed in terms of $yy$.

This method sums up infinitesimal circular discs to compute the total volume.



Benefits of Important Questions for Class 12 Maths Chapter 8 By Vedantu

  • Comprehensive Coverage: These questions encompass all key topics, ensuring a thorough understanding of areas under curves and between lines and curves.
    Exam-Oriented Preparation: Curated by experts, the questions align with the latest CBSE syllabus and exam patterns, aiding in effective exam preparation.

  • Enhanced Problem-Solving Skills: Regular practice with these questions improves analytical abilities, enabling students to tackle various problem types confidently.

  • Accessible Learning: Available as a free PDF download, these resources provide convenient access to quality study material anytime, anywhere.

  • Time Management: Practicing these questions helps students develop efficient time management skills, ensuring they can complete exam sections within the allotted time.

  • Self-Assessment: Attempting these questions allows students to assess their understanding and identify areas needing further revision, promoting a targeted and effective study approach.


Tips to Study Class 12 Maths Chapter 8: Applications of Integrals

  • Comprehensive Coverage: These questions encompass all key topics, ensuring a thorough understanding of areas under curves and between lines and curves.

  • Exam-Oriented Preparation: Curated by experts, the questions align with the latest CBSE syllabus and exam patterns, aiding in effective exam preparation.

  • Enhanced Problem-Solving Skills: Regular practice with these questions improves analytical abilities, enabling students to tackle various problem types confidently.

  • Accessible Learning: Available as a free PDF download, these resources provide convenient access to quality study material anytime, anywhere. 

  • Time Management: Practicing these questions helps students develop efficient time management skills, ensuring they can complete exam sections within the allotted time.

  • Self-Assessment: Attempting these questions allows students to assess their understanding and identify areas needing further revision, promoting a targeted and effective study approach.


Extra Practice Questions for Class 12 Maths Chapter 8 - Application of Integrals

  1. Determine the region's area bounded by x =√k and x = k.

  2. Determine the region's area bounded x2 = 4y, y = 2, y = 4, and the y – axis in the first quadrant.

  3. Find the area bounded by the curve y = 4 – x2 and the lines y = 0 and y = 3.

  4. Determine the area including between the parabolas y2 = 4ax and x2 = 4by.

  5. What area is bounded by the parabola y2 = 4x and x2 = 4y?

  6. Find the area bounded by the parabola y2 = 4ax. Also, find its latus rectum and the x-axis.

  7. Determine the area of the curve y = sin x between 0 and π.

  8. Calculate the area of the smaller part of the circle x2 + y2 = a2 cut off by the line x = a/√2.

  9. Find the areas of the region: {(x,y): x2 + y2 ≤ 1 ≤ x + 4}

  10. Find the area bounded by the curves y = cos x, y= 0, and x = |1|.


Conclusion

Mastering Chapter 8, "Applications of Integrals," is essential for CBSE Class 12 Mathematics students, as it provides the tools to calculate areas under curves and between lines and curves—skills that are vital for advanced studies in mathematics and related fields. To aid in this endeavor, a curated set of important questions is available for free PDF download, aligning with the latest CBSE syllabus and exam patterns. Engaging with these resources will enhance your problem-solving abilities and deepen your understanding of integral applications, thereby boosting your confidence and performance in examinations.



Related Study Materials for Class 12 Maths Chapter 8 Application of Integrals


CBSE Class 12 Maths Chapter-wise Important Questions

CBSE Class 12 Maths Chapter-wise Important Questions and Answers cover topics from all 13 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.


Additional Study Materials for Class 12 Maths 

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on Class 12 Important Questions: CBSE Maths Chapter 8 Applications of Integrals 2024-25

1. What are the most important question types from Chapter 8 Applications of Integrals for CBSE Class 12 exams?

  • Standard Area Under Curve Problems – Finding areas bounded by standard curves like circles, ellipses, parabolas, and straight lines (every year, 3-4 marks).
  • Area Between Two Curves – Calculating area enclosed between intersecting curves, like parabola vs. straight line or two circles (5-mark HOTS, repeated last 5 years).
  • Area by Integration in Polar/Parametric Form – Less frequent but tested for conceptual depth.
  • Application/Reasoning – Proving curves divide figures into equal parts, interpreting shaded areas, or conceptual HOTS.
These cover nearly all CBSE Patterns as per 2025–26 trend. Practice at least one from each type for full preparedness.

2. How can I avoid common mistakes when solving area problems in Applications of Integrals for Class 12?

  • Always Draw Proper Graphs: Shading the desired area clarifies upper and lower curves, ensuring correct limits.
  • Check Limits of Integration: Use intersecting points for limits, not arbitrary bounds.
  • Keep Track of Function Order: Always subtract the lower curve from the upper curve in definite integrals.
  • Watch for Even/Odd Symmetry: For full figures (like circles), integrate for one quadrant and multiply accordingly.
Attention to these details prevents mark loss in board exams due to process or calculation errors.

3. Which concepts from Chapter 8 Application of Integrals are frequently tested for higher-order or HOTS questions?

  • Area between intersecting curves and unusual regions (e.g., ellipse and a straight line, or between two circles).
  • Areas involving modulus or absolute value curves (e.g., y = |x| vs. y = x^2 domains).
  • Proof-based or demonstration questions, such as proving division of an area into equal parts by given curves.
  • Parametric/Polar Integration questions, asking to derive area formulas for given parametric curves.
These are often 5-mark, long-answer or internal-choice questions as per latest CBSE Class 12 blueprint.

4. In board exams, what marking scheme typically applies to 'area between curves' problems from Chapter 8?

According to the CBSE 2025–26 scheme, ‘area between curves’ questions are:

  • Usually for 3 or 5 marks, depending on complexity.
  • 1 mark for drawing/sketching curves and indicating limits.
  • 2-3 marks for correct integral setup, solving, and proper explanation/calculation.
  • Errors in order of subtraction or wrong limits may lose 1–2 marks even if integration is correct.
Stepwise marking is followed, especially if diagrams and intermediate steps are shown clearly.

5. What is a proven strategy to solve complex Application of Integrals questions involving more than two curves or piecewise regions?

  • Step 1: Draw all curves and identify critical points of intersection.
  • Step 2: Divide the region into sub-areas, each bounded by only two curves.
  • Step 3: Set up separate integrals for each region, use correct curve order, then sum all results.
  • Step 4: Indicate all steps and justify function order for full credit.
Breaking complex regions into manageable parts is a scoring approach for Class 12 board questions.

6. How can a student best prepare for Application of Integrals questions expected in CBSE Class 12 (2025–26)?

  • First, master all NCERT exercise questions (Class 12 Maths Chapter 8) for standard problems.
  • Second, practice previous year CBSE questions and model papers for expected HOTS and marking schemes.
  • Third, attempt additional questions on area between curves, especially involving modulus, parametric, and polar forms.
  • Fourth, time yourself to complete each question in 7–12 minutes as per exam standards.
This strategy ensures you cover both routine and challenging exam questions effectively.

7. What are application-based or real-world contexts for questions from Applications of Integrals in Class 12?

  • Calculating land or plot area using mathematical curves in engineering or surveying.
  • Finding the area swept by a moving point/object (in physics or engineering mechanics).
  • Computing areas involving growth/decay in economics or biology where variables change non-linearly.
CBSE is increasingly including context-based questions to test deeper understanding of integrals beyond theoretical curves.

8. How do I determine which function is the upper and which is the lower when integrating the area between two curves?

For area between curves in Class 12 Chapter 8:

  • Plot both functions on the graph for given limits.
  • At every value in the integration interval, the function with the greater y-value is the upper curve, and the lesser is the lower curve.
  • Integrate: Area = ∫[Upper – Lower] dx
If in doubt, substitute a value between the limits into both functions to see which yields a higher output. Labeling in the sketch always helps avoid confusion.

9. Why do board examiners often ask area problems using symmetric figures (like circles or ellipses) in Application of Integrals?

CBSE examiners favor symmetry in questions (e.g. circles, ellipses) because:

  • They simplify calculations by letting students compute the area in one sector/quadrant and multiply by symmetry factor (2 or 4).
  • They test conceptual clarity regarding limits and the geometric structure of the figure.
  • They allow HOTS/Prove-based questions, such as dividing areas equally or applying definite integration shortcuts.
Mastering symmetry shortens your calculations and maximizes scores in Class 12 boards.

10. FUQ: What misconception do students often have about limits of integration, and how can it impact marks in Application of Integrals questions?

The biggest misconception:

  • Assuming arbitrary or fixed limits (like 0 to a, or -a to a) without checking intersection points.
  • Using x-limits for y-integrals and vice versa.
  • Ignoring that actual bounds must be found by solving the equations of the bounding curves (i.e., points where they meet).
This leads to zero marks for the main calculation, even if integration is correct. Always calculate intersection points algebraically and confirm them via sketch.

11. How can you quickly verify your answer in area calculation problems from Application of Integrals?

  • Unit check: The answer should have units of area (e.g., sq. units).
  • Symmetry: If working with halves/quadrants, multiply accordingly for the total.
  • Estimation: Estimate area from the sketch. If final answer is vastly different, re-examine the process.
Fast verification prevents last-minute calculation errors and ensures full marks in CBSE exams.

12. FUQ: How should you approach a question that asks for the area "enclosed between |x| and x^2" in Class 12 Application of Integrals?

For area enclosed by y = |x| and y = x^2:

  • Observe symmetry about the y-axis – calculate area for x ≥ 0, then double the result.
  • Find intersection points: Solve x = x^2 for x ≥ 0, yielding x = 0 and x = 1.
  • Set up: Area = 2∫₀¹ [x – x^2] dx.
  • Calculate integral and state answer in square units.
This question tests both modulus handling and definite integral setup, a frequent CBSE HOTS trend.

13. FUQ: What should you do if a question asks you to prove that two curves divide a square into three equal areas using Application of Integrals?

  • Sketch and label the square and curves (e.g., y = x^2 and x = y^2).
  • Set up definite integrals for each region formed by the intersection of the curves within the square.
  • Show that the area of each region (using proper bounds) equals 1/3 of the total square area.
  • State your reasoning clearly, and cite symmetry if used in the calculation.
This approach is expected in CBSE board HOTS and proof-based sections for Application of Integrals.

14. What weightage can be expected for Application of Integrals in CBSE Class 12 Maths Board Exam 2025–26?

  • Class 12 Chapter 8 (Application of Integrals) typically carries 6–8 marks.
  • Usually comprises one 3-mark short answer and one 5-mark long answer/HOTS or proof-based problem.
  • Questions are direct from the chapter, and trend analysis shows a preference for standard area or area-between-curves types.
Prepare accordingly to fully secure these marks.

15. FUQ: How does understanding the application of integrals benefit students beyond CBSE exams?

  • It enables calculation of complex areas and volumes encountered in higher studies (engineering, physics, economics).
  • Provides a base for problem-solving in competitive exams like JEE and university entrance tests.
  • Teaches analytical reasoning, visualization, and real-world modeling—skills vital in STEM fields.
Thus, conceptual strength in this chapter offers long-term academic and professional advantages.