
Without using a calculator find the value of $ \sin \left( {{105}^{\circ }} \right) $ .
Answer
501.6k+ views
Hint: In this question, we need to find the value of $ \sin \left( {{105}^{\circ }} \right) $ without using the calculator. For this, we will use the trigonometric identities and formulas. We will use the trigonometric identity of sin(A+B) according to which $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $ . After that, we will put in the known values of sine and cosine function from the trigonometric ratio table and finally evaluate our answer.
Complete step by step answer:
Here we are given the function as $ \sin \left( {{105}^{\circ }} \right) $ . We need to evaluate it without a calculator.
From the trigonometric ratio table, we only know the value of trigonometric ratios with angles $ {{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}\text{ and }{{90}^{\circ }} $ . So we can write $ {{105}^{\circ }} $ as $ {{60}^{\circ }}+{{45}^{\circ }} $ .
Therefore our expression becomes $ \sin \left( {{105}^{\circ }} \right)=\sin \left( {{60}^{\circ }}+{{45}^{\circ }} \right) $ .
We know that the formula of the sum of angles in a sine function is given as, $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $ . So we can apply it on $ \sin \left( {{60}^{\circ }}+{{45}^{\circ }} \right) $ where A will be equal to $ {{60}^{\circ }} $ and B will be equal to $ {{45}^{\circ }} $ .
So our expression becomes $ \sin \left( {{105}^{\circ }} \right)=\sin {{60}^{\circ }}\cos {{45}^{\circ }}+\cos {{60}^{\circ }}\sin {{45}^{\circ }}\cdots \cdots \cdots \left( 1 \right) $ .
Let us draw trigonometric ratio table for sine and cosine function to evaluate the value of $ \sin {{60}^{\circ }},\cos {{60}^{\circ }},\sin {{45}^{\circ }},\cos {{45}^{\circ }} $ we get,
As we can see, $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2},\cos {{60}^{\circ }}=\dfrac{1}{2},\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ . So putting these values in (1) we get,
$ \sin \left( {{105}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right) $ .
Simplifying it we get,
$ \begin{align}
& \sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\
& \Rightarrow \sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align} $ .
Which is our required answer.
Hence, $ \sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{2\sqrt{2}} $ .
Note:
Students should keep in mind the formula of the trigonometric function and also the trigonometric ratio table. Take care of signs while solving. Students can also rationalize the final answer to get a more simplified answer in the following way, we have $ \dfrac{\sqrt{3}+1}{2\sqrt{2}} $ .
Multiplying the numerator and denominator by $ \sqrt{2} $ we get,
$ \dfrac{\sqrt{3}+1}{2\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}} $ .
Using $ \sqrt{a}\times \sqrt{b}=\sqrt{ab} $ and $ \sqrt{a}\sqrt{a}=a $ we get,
\[\dfrac{\sqrt{3}\sqrt{2}+\sqrt{2}}{2\sqrt{2}\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\].
So we can also say that \[\sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}\].
Complete step by step answer:
Here we are given the function as $ \sin \left( {{105}^{\circ }} \right) $ . We need to evaluate it without a calculator.
From the trigonometric ratio table, we only know the value of trigonometric ratios with angles $ {{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}\text{ and }{{90}^{\circ }} $ . So we can write $ {{105}^{\circ }} $ as $ {{60}^{\circ }}+{{45}^{\circ }} $ .
Therefore our expression becomes $ \sin \left( {{105}^{\circ }} \right)=\sin \left( {{60}^{\circ }}+{{45}^{\circ }} \right) $ .
We know that the formula of the sum of angles in a sine function is given as, $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $ . So we can apply it on $ \sin \left( {{60}^{\circ }}+{{45}^{\circ }} \right) $ where A will be equal to $ {{60}^{\circ }} $ and B will be equal to $ {{45}^{\circ }} $ .
So our expression becomes $ \sin \left( {{105}^{\circ }} \right)=\sin {{60}^{\circ }}\cos {{45}^{\circ }}+\cos {{60}^{\circ }}\sin {{45}^{\circ }}\cdots \cdots \cdots \left( 1 \right) $ .
Let us draw trigonometric ratio table for sine and cosine function to evaluate the value of $ \sin {{60}^{\circ }},\cos {{60}^{\circ }},\sin {{45}^{\circ }},\cos {{45}^{\circ }} $ we get,
$ \theta\to $ | $ {{0}^{\circ }} $ | $ {{30}^{\circ }} $ | $ {{45}^{\circ }} $ | $ {{60}^{\circ }} $ | $ {{90}^{\circ }} $ |
sine | 0 | $ \dfrac{1}{2} $ | $ \dfrac{1}{\sqrt{2}} $ | $ \dfrac{\sqrt{3}}{2} $ | 1 |
cosine | 1 | $ \dfrac{\sqrt{3}}{2} $ | $ \dfrac{1}{\sqrt{2}} $ | $ \dfrac{1}{2} $ | 0 |
As we can see, $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2},\cos {{60}^{\circ }}=\dfrac{1}{2},\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ . So putting these values in (1) we get,
$ \sin \left( {{105}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right) $ .
Simplifying it we get,
$ \begin{align}
& \sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\
& \Rightarrow \sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align} $ .
Which is our required answer.
Hence, $ \sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{2\sqrt{2}} $ .
Note:
Students should keep in mind the formula of the trigonometric function and also the trigonometric ratio table. Take care of signs while solving. Students can also rationalize the final answer to get a more simplified answer in the following way, we have $ \dfrac{\sqrt{3}+1}{2\sqrt{2}} $ .
Multiplying the numerator and denominator by $ \sqrt{2} $ we get,
$ \dfrac{\sqrt{3}+1}{2\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}} $ .
Using $ \sqrt{a}\times \sqrt{b}=\sqrt{ab} $ and $ \sqrt{a}\sqrt{a}=a $ we get,
\[\dfrac{\sqrt{3}\sqrt{2}+\sqrt{2}}{2\sqrt{2}\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\].
So we can also say that \[\sin \left( {{105}^{\circ }} \right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
