
How do you use a calculator to find the sum of $\sum {\dfrac{{{{( - 1)}^k}}}{{k + 1}}} $ where $k$ is $[0,4]$?
Answer
487.2k+ views
Hint: Start by defining the summation. Then specify if there are any types. Then next start substituting values one by one in the summation term. After evaluating values of each of the terms, add all those values and evaluate the summation.
Complete step-by-step answer:
We will first start off by substituting the terms starting from $0$ to $4$. So, now we substitute $0$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^0}}}{{0 + 1}} \\
\Rightarrow \dfrac{1}{1} \\
\Rightarrow 1 \\
$
So, now next we substitute $1$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^1}}}{{1 + 1}} \\
\Rightarrow \dfrac{{ - 1}}{2} \\
$
So, now next we substitute $2$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^2}}}{{2 + 1}} \\
\Rightarrow \dfrac{1}{3} \\
$
So, now next we substitute $3$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^3}}}{{3 + 1}} \\
\Rightarrow \dfrac{{ - 1}}{4} \\
$
So, now next we substitute $4$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^4}}}{{4 + 1}} \\
\Rightarrow \dfrac{1}{5} \\
$
Now that we have evaluated the value of each term by substitution of values, we will now add all the values in order to evaluate the summation.
$
\Rightarrow 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} \\
\Rightarrow 0.783 \\
$
Hence, the value of the summation $\sum {\dfrac{{{{( - 1)}^k}}}{{k + 1}}} $ is $0.783$.
Additional Information: Summation is the addition of a sequence of any kind of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well like the functions, vectors, matrices, polynomials and in general, elements of any type of mathematical objects on which an operation.
Note: While substituting the terms, make sure you substitute along with their respective powers and signs. While adding the terms after evaluating the values make sure to add along with their signs, do not change their signs.
Complete step-by-step answer:
We will first start off by substituting the terms starting from $0$ to $4$. So, now we substitute $0$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^0}}}{{0 + 1}} \\
\Rightarrow \dfrac{1}{1} \\
\Rightarrow 1 \\
$
So, now next we substitute $1$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^1}}}{{1 + 1}} \\
\Rightarrow \dfrac{{ - 1}}{2} \\
$
So, now next we substitute $2$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^2}}}{{2 + 1}} \\
\Rightarrow \dfrac{1}{3} \\
$
So, now next we substitute $3$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^3}}}{{3 + 1}} \\
\Rightarrow \dfrac{{ - 1}}{4} \\
$
So, now next we substitute $4$, and then evaluate the value of the term.
$
\Rightarrow \dfrac{{{{( - 1)}^k}}}{{k + 1}} \\
\Rightarrow \dfrac{{{{( - 1)}^4}}}{{4 + 1}} \\
\Rightarrow \dfrac{1}{5} \\
$
Now that we have evaluated the value of each term by substitution of values, we will now add all the values in order to evaluate the summation.
$
\Rightarrow 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} \\
\Rightarrow 0.783 \\
$
Hence, the value of the summation $\sum {\dfrac{{{{( - 1)}^k}}}{{k + 1}}} $ is $0.783$.
Additional Information: Summation is the addition of a sequence of any kind of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well like the functions, vectors, matrices, polynomials and in general, elements of any type of mathematical objects on which an operation.
Note: While substituting the terms, make sure you substitute along with their respective powers and signs. While adding the terms after evaluating the values make sure to add along with their signs, do not change their signs.
Recently Updated Pages
NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.2

NCERT Solutions For Class 11 Maths Sets Exercise 1.4

NCERT Solutions For Class 11 Maths Miscellaneous Exercise - Limits and Derivatives

NCERT Solutions For Class 12 Maths Integrals Exercise 7.9

NCERT Solutions For Class 11 Biology In Hindi - Excretory Products And Their Elimination

NCERT Solutions For Class 2 Hindi Sarangi - Gire Taal Mein Chanda Maama

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations

Choose the feminine form of the given noun Fox AFoxess class 10 english CBSE
