
There is only one way to choose real number M and N such that when the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ is divided by polynomial ${x^2} + 1$ the remainder is 0. If M and N assume these unique values then M-N:
$ {\text{A}}{\text{. 6}} \\
{\text{B}}{\text{. - 2}} \\
{\text{C}}{\text{. 6}} \\
{\text{D}}{\text{. 2}} \\ $
Answer
562.8k+ views
Hint: Substitute i and –i in the polynomial. From these substitutions we obtain 2 expressions. By equating those expressions to 0 and making the coefficients null get the values of M and N.
Formula Used:
$
{i^1} = i \\
{i^2} = - 1 \\
{i^3} = - i \\
{i^4} = 1 \\ $
Complete step-by-step answer:
The divisor is x2 + 1 so, the values of x obtained are:
$ {x^2} + 1 = 0 \\
{x^2} = - 1 \\
x = i, - i $
The values of the divisor can be substituted in the polynomial as
$p(x) = q(x).g(x) + r(x)$
Where, p(x)= dividend, q(x)=quotient, g(x)=divisor and r(x)=remainder
To get the values of x we equate g(x) with 0. Now, if we substitute the value of x at LHS and RHS then, g(x) becomes 0. Hence $g(x).q(x)=0$ So, then we are left with, $p(x)=r(x)$.
Substitute these values in the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ we get for x = i
$5{i^4} + 4{i^3} + 3{i^2} + Mi + N$
$5 + (-4i) + (-3) + Mi + N$
Collecting the terms with iota and without iota $ (M-4)i + (N+2)$
Similarly on putting $x = -i$, we get
$5{\left( { - i} \right)^4} + 4{\left( { - i} \right)^3} + 3{\left( { - i} \right)^2} + M\left( { - i} \right) + N$
$5 +4i + (-3)- Mi + N$
Collecting the terms with iota and without iota- $(-M+4)i + (N+2)$
Which is $[- (M-4)i] + [(N+2)]$
So, we observe that the 2 expressions are just the same. So, just equating to 0 as is given in the question that the remainder must be 0.
$(M-4)i + (N+2)=0$
We have $(M-4)i = 0$, gives $M=4$ and $(N+2)=0$ gives $N= -2$.
$M=4$ and $N= -2$ are the required values.
Note: Another way to solve the same numerical is by dividing the given polynomial by ${x^2} + 1$ and then equating the remainder obtained to 0 as is stated in the question.
But division a polynomial by polynomial will be a longer approach that’s why we don’t consider this method.
Formula Used:
$
{i^1} = i \\
{i^2} = - 1 \\
{i^3} = - i \\
{i^4} = 1 \\ $
Complete step-by-step answer:
The divisor is x2 + 1 so, the values of x obtained are:
$ {x^2} + 1 = 0 \\
{x^2} = - 1 \\
x = i, - i $
The values of the divisor can be substituted in the polynomial as
$p(x) = q(x).g(x) + r(x)$
Where, p(x)= dividend, q(x)=quotient, g(x)=divisor and r(x)=remainder
To get the values of x we equate g(x) with 0. Now, if we substitute the value of x at LHS and RHS then, g(x) becomes 0. Hence $g(x).q(x)=0$ So, then we are left with, $p(x)=r(x)$.
Substitute these values in the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ we get for x = i
$5{i^4} + 4{i^3} + 3{i^2} + Mi + N$
$5 + (-4i) + (-3) + Mi + N$
Collecting the terms with iota and without iota $ (M-4)i + (N+2)$
Similarly on putting $x = -i$, we get
$5{\left( { - i} \right)^4} + 4{\left( { - i} \right)^3} + 3{\left( { - i} \right)^2} + M\left( { - i} \right) + N$
$5 +4i + (-3)- Mi + N$
Collecting the terms with iota and without iota- $(-M+4)i + (N+2)$
Which is $[- (M-4)i] + [(N+2)]$
So, we observe that the 2 expressions are just the same. So, just equating to 0 as is given in the question that the remainder must be 0.
$(M-4)i + (N+2)=0$
We have $(M-4)i = 0$, gives $M=4$ and $(N+2)=0$ gives $N= -2$.
$M=4$ and $N= -2$ are the required values.
Note: Another way to solve the same numerical is by dividing the given polynomial by ${x^2} + 1$ and then equating the remainder obtained to 0 as is stated in the question.
But division a polynomial by polynomial will be a longer approach that’s why we don’t consider this method.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is October 161905 regarded as an important day class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

List of Lok Sabha Speakers of India

Which one of the following is the deepest seaport of class 10 social science CBSE
