
There is only one way to choose real number M and N such that when the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ is divided by polynomial ${x^2} + 1$ the remainder is 0. If M and N assume these unique values then M-N:
$ {\text{A}}{\text{. 6}} \\
{\text{B}}{\text{. - 2}} \\
{\text{C}}{\text{. 6}} \\
{\text{D}}{\text{. 2}} \\ $
Answer
523.8k+ views
Hint: Substitute i and –i in the polynomial. From these substitutions we obtain 2 expressions. By equating those expressions to 0 and making the coefficients null get the values of M and N.
Formula Used:
$
{i^1} = i \\
{i^2} = - 1 \\
{i^3} = - i \\
{i^4} = 1 \\ $
Complete step-by-step answer:
The divisor is x2 + 1 so, the values of x obtained are:
$ {x^2} + 1 = 0 \\
{x^2} = - 1 \\
x = i, - i $
The values of the divisor can be substituted in the polynomial as
$p(x) = q(x).g(x) + r(x)$
Where, p(x)= dividend, q(x)=quotient, g(x)=divisor and r(x)=remainder
To get the values of x we equate g(x) with 0. Now, if we substitute the value of x at LHS and RHS then, g(x) becomes 0. Hence $g(x).q(x)=0$ So, then we are left with, $p(x)=r(x)$.
Substitute these values in the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ we get for x = i
$5{i^4} + 4{i^3} + 3{i^2} + Mi + N$
$5 + (-4i) + (-3) + Mi + N$
Collecting the terms with iota and without iota $ (M-4)i + (N+2)$
Similarly on putting $x = -i$, we get
$5{\left( { - i} \right)^4} + 4{\left( { - i} \right)^3} + 3{\left( { - i} \right)^2} + M\left( { - i} \right) + N$
$5 +4i + (-3)- Mi + N$
Collecting the terms with iota and without iota- $(-M+4)i + (N+2)$
Which is $[- (M-4)i] + [(N+2)]$
So, we observe that the 2 expressions are just the same. So, just equating to 0 as is given in the question that the remainder must be 0.
$(M-4)i + (N+2)=0$
We have $(M-4)i = 0$, gives $M=4$ and $(N+2)=0$ gives $N= -2$.
$M=4$ and $N= -2$ are the required values.
Note: Another way to solve the same numerical is by dividing the given polynomial by ${x^2} + 1$ and then equating the remainder obtained to 0 as is stated in the question.
But division a polynomial by polynomial will be a longer approach that’s why we don’t consider this method.
Formula Used:
$
{i^1} = i \\
{i^2} = - 1 \\
{i^3} = - i \\
{i^4} = 1 \\ $
Complete step-by-step answer:
The divisor is x2 + 1 so, the values of x obtained are:
$ {x^2} + 1 = 0 \\
{x^2} = - 1 \\
x = i, - i $
The values of the divisor can be substituted in the polynomial as
$p(x) = q(x).g(x) + r(x)$
Where, p(x)= dividend, q(x)=quotient, g(x)=divisor and r(x)=remainder
To get the values of x we equate g(x) with 0. Now, if we substitute the value of x at LHS and RHS then, g(x) becomes 0. Hence $g(x).q(x)=0$ So, then we are left with, $p(x)=r(x)$.
Substitute these values in the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ we get for x = i
$5{i^4} + 4{i^3} + 3{i^2} + Mi + N$
$5 + (-4i) + (-3) + Mi + N$
Collecting the terms with iota and without iota $ (M-4)i + (N+2)$
Similarly on putting $x = -i$, we get
$5{\left( { - i} \right)^4} + 4{\left( { - i} \right)^3} + 3{\left( { - i} \right)^2} + M\left( { - i} \right) + N$
$5 +4i + (-3)- Mi + N$
Collecting the terms with iota and without iota- $(-M+4)i + (N+2)$
Which is $[- (M-4)i] + [(N+2)]$
So, we observe that the 2 expressions are just the same. So, just equating to 0 as is given in the question that the remainder must be 0.
$(M-4)i + (N+2)=0$
We have $(M-4)i = 0$, gives $M=4$ and $(N+2)=0$ gives $N= -2$.
$M=4$ and $N= -2$ are the required values.
Note: Another way to solve the same numerical is by dividing the given polynomial by ${x^2} + 1$ and then equating the remainder obtained to 0 as is stated in the question.
But division a polynomial by polynomial will be a longer approach that’s why we don’t consider this method.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
Every rational number is a A natural number b An integer class 10 maths CBSE

The states of India which do not have an International class 10 social science CBSE

How do you split the middle term in quadratic equa class 10 maths CBSE

Show that the points 11 52 and 9 5 are collinear-class-10-maths-CBSE

What are 5 characteristics of solids class 10 chemistry CBSE

Write a Paragraph on Environment
