Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The roots of the cubic equation $ {{\left( z+ab \right)}^{3}}={{a}^{3}} $ such that $ a\ne 0 $ represent the vertices of a triangle of sides of length
\[\begin{align}
  & A.\dfrac{1}{\sqrt{3}}\left| ab \right| \\
 & B.\sqrt{3}\left| a \right| \\
 & C.\sqrt{3}\left| b \right| \\
 & D.\left| a \right| \\
\end{align}\]

Answer
VerifiedVerified
500.1k+ views
Hint:
In this question, we are given that, roots of cubic equation $ {{\left( z+ab \right)}^{3}}={{a}^{3}} $ are the vertices of a triangle and we need to find the length of sides of the triangle. For this we will first calculate the roots $ \left( {{z}_{1}},{{z}_{2}},{{z}_{3}} \right) $ of the equation using the cube root of unity $ \left( \omega \right) $ . Then using them we will find the length of the sides of triangle given by $ \left| {{z}_{1}}-{{z}_{2}} \right|,\left| {{z}_{2}}-{{z}_{3}} \right|,\left| {{z}_{3}}-{{z}_{1}} \right| $ .
We will use the following formula:
(I) Cube root of unity are $ 1,\omega ,{{\omega }^{2}} $ where $ \omega =\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}\text{ and }{{\omega }^{2}}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} $ .
(II) $ \left| x+iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}} $

Complete step by step answer:
Here we are given the equation as, $ {{\left( z+ab \right)}^{3}}={{a}^{3}} $ where z is complex number and $ a\ne 0 $ . To solve this question, let us write the right side of the equation as $ {{\left( z+ab \right)}^{3}}={{a}^{3}}\cdot 1 $ .
Let us take cube root on both sides, we get, $ {{\left( {{\left( z+ab \right)}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( {{a}^{3}}\cdot 1 \right)}^{\dfrac{1}{3}}} $ .
We know, $ {{\left( {{a}^{m}} \right)}^{m}}={{a}^{mn}} $ so we get $ {{\left( z+ab \right)}^{\dfrac{3}{3}}}={{a}^{\dfrac{3}{3}}}{{\left( 1 \right)}^{\dfrac{1}{3}}}\Rightarrow z+ab=a{{\left( 1 \right)}^{\dfrac{1}{3}}} $ .
We know that cube roots of unity $ {{\left( 1 \right)}^{\dfrac{1}{3}}} $ are $ 1,\omega ,{{\omega }^{2}} $ where $ \omega =\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}\text{ and }{{\omega }^{2}}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} $ .
So we get three equation as,
 $ z+ab=a,z+ab=a\omega \text{ and }z+ab=a{{\omega }^{2}} $ .
Let us solve for z we get, $ z+ab=a\Rightarrow z=a-ab $ .
Let this root be $ {{z}_{1}} $ so we have $ {{z}_{1}}=a-ab $ .
 $ z+ab=a\omega \Rightarrow z=a\omega -ab $ .
Let this root be $ {{z}_{2}} $ so we have $ {{z}_{2}}=a\omega -ab $ .
 $ z+ab=a{{\omega }^{2}}\Rightarrow z=a{{\omega }^{2}}-ab $ .
Let this root be $ {{z}_{3}} $ so we have $ {{z}_{3}}=a{{\omega }^{2}}-ab $ .
Therefore, roots of the equation are $ {{z}_{1}}=a-ab,{{z}_{2}}=a\omega -ab\text{ and }{{z}_{3}}=a{{\omega }^{2}}-ab $ .
These represent vertices of a triangle,

seo images

Now let us find the length of the sides of this triangle. We know length of sides of triangle with vertices $ {{z}_{1}},{{z}_{2}},{{z}_{3}} $ are given by $ \left| {{z}_{1}}-{{z}_{2}} \right|,\left| {{z}_{2}}-{{z}_{3}} \right|,\left| {{z}_{3}}-{{z}_{1}} \right| $ .
So let us calculate them, we have length
\[\begin{align}
  & \left| {{z}_{1}}-{{z}_{2}} \right|=\left| a-ab-\left( a\omega -ab \right) \right| \\
 & \Rightarrow \left| a-ab-a\omega +ab \right| \\
 & \Rightarrow \left| a-a\omega \right| \\
 & \Rightarrow \left| a\left( 1-\omega \right) \right| \\
\end{align}\]
We know that $ \left| ab \right|=\left| a \right|\left| b \right| $ so we get,
 $ \left| {{z}_{1}}-{{z}_{2}} \right|=\left| a \right|\left| 1-\omega \right| $
Putting in the values of $ \omega $ as $ \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} $ We get,
\[\begin{align}
  & \left| {{z}_{1}}-{{z}_{2}} \right|=\left| a \right|\left| 1-\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right) \right| \\
 & \Rightarrow \left| a \right|\left| 1+\dfrac{1}{2}-\dfrac{i\sqrt{3}}{2} \right| \\
 & \Rightarrow \left| a \right|\left| \dfrac{3}{2}-\dfrac{i\sqrt{3}}{2} \right| \\
\end{align}\]
Now we know $ \left| x+iy \right|={{\left( {{x}^{2}}+{{y}^{2}} \right)}^{\dfrac{1}{2}}} $ so we get,
\[\begin{align}
  & \left| {{z}_{1}}-{{z}_{2}} \right|=\left| a \right|{{\left( {{\left( \dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}} \right)}^{\dfrac{1}{2}}} \\
 & \Rightarrow \left| a \right|{{\left( \dfrac{9}{4}+\dfrac{3}{4} \right)}^{\dfrac{1}{2}}} \\
 & \Rightarrow \left| a \right|{{\left( \dfrac{12}{4} \right)}^{\dfrac{1}{2}}} \\
 & \Rightarrow \left| a \right|{{\left( 3 \right)}^{\dfrac{1}{2}}} \\
 & \Rightarrow \left| a \right|\sqrt{3} \\
 & \Rightarrow \sqrt{3}\left| a \right| \\
\end{align}\]
So length of one of the sides of triangle is \[\sqrt{3}\left| a \right|\].
Since this option already matches and this question has one solution only so we have our answer as \[\sqrt{3}\left| a \right|\].
Hence option B is the correct answer.
Note:
 Students should keep in mind all the formulas for solving this sum. They can also find the values of $ \left| {{Z}_{2}}-{{Z}_{3}} \right|\text{ and }\left| {{Z}_{3}}-{{Z}_{1}} \right| $ to check their answer. They will get the same answer i.e. \[\left| {{Z}_{1}}-{{Z}_{2}} \right|=\left| {{Z}_{2}}-{{Z}_{3}} \right|=\left| {{Z}_{3}}-{{Z}_{1}} \right|=\sqrt{3}\left| a \right|\] Take care of signs while solving this sum. Students should keep in mind the values of cube root of unity.