Answer
Verified
465.6k+ views
Hint:
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
What is composite fish culture What are the advantages class 12 biology CBSE
What is teminism class 12 biology CBSE