
The rectangular components of a vector lying in the \[xy\] plane are 1 and \[p + 1\]. If coordinate system turned by \[30^\circ\], they are \[p\] and 4 respectively the value of \[p\] is:
A) 2
B) 4
C) \[3.5\]
D) 7
Answer
490.2k+ views
Hint:
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Express the following as a fraction and simplify a class 7 maths CBSE

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE

Franz thinks Will they make them sing in German even class 12 english CBSE
