
The phase difference between current and voltage in an AC circuit is $\dfrac{\pi }{4}$ radian. If the frequency of AC is 50Hz, then the phase difference is equivalent to the time difference of
A. 0.75s
B. 10.5s
C. 2.5ms
D. 0.25ms
Answer
522.9k+ views
Hint – In order to solve this problem we need to find the time period of one revolution and then find the time period of $\dfrac{\pi }{4}$ revolution. Doing this will solve your problem.
Formula used - ${\text{Time}}\,{\text{period = }}\dfrac{{\text{1}}}{{{\text{frequency}}}}$.
Complete Step-by-Step solution:
Frequency of the circuit is given as 50Hz.
Therefore the time period of the wave is $\dfrac{1}{f} = \dfrac{1}{{50}} = 0.02s$
As we know that in one time period the revolution is $2\pi $.
Then $\dfrac{\pi }{4}$ has the time period of $\dfrac{{0.02}}{{2\pi }}{\text{x}}\dfrac{\pi }{4} = 0.0025s = 2.5ms$.
Hence, the correct option is C.
Note – To solve such problems we need to know that in AC circuit the equations are sinusoidal and the frequency is inverse of time period and when there is the difference between the phases of current and voltage then the circuit is not purely resistive and when there is no phase difference then the circuit is purely resistive. To solve this problem you only need to know that the inverse of frequency is the time period and vice-versa.
Formula used - ${\text{Time}}\,{\text{period = }}\dfrac{{\text{1}}}{{{\text{frequency}}}}$.
Complete Step-by-Step solution:
Frequency of the circuit is given as 50Hz.
Therefore the time period of the wave is $\dfrac{1}{f} = \dfrac{1}{{50}} = 0.02s$
As we know that in one time period the revolution is $2\pi $.
Then $\dfrac{\pi }{4}$ has the time period of $\dfrac{{0.02}}{{2\pi }}{\text{x}}\dfrac{\pi }{4} = 0.0025s = 2.5ms$.
Hence, the correct option is C.
Note – To solve such problems we need to know that in AC circuit the equations are sinusoidal and the frequency is inverse of time period and when there is the difference between the phases of current and voltage then the circuit is not purely resistive and when there is no phase difference then the circuit is purely resistive. To solve this problem you only need to know that the inverse of frequency is the time period and vice-versa.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

What is the next number in the sequence 77493618 class 10 maths CBSE

Which is the second highest peak in India A Kanchenjunga class 10 social science CBSE

How do you split the middle term in quadratic equa class 10 maths CBSE
