The magnetic susceptibility of a magnetic material is $3\times {{10}^{-4}}$. Its relative permeability will be
$\begin{align}
& \left( A \right)31\times {{10}^{-4}} \\
& \left( B \right)1.003 \\
& \left( C \right)1.0003 \\
& \left( D \right)29\times {{10}^{-4}} \\
\end{align}$
Answer
Verified
465k+ views
Hint: Use the equation connecting the relative permeability to the magnetic susceptibility of a material. That, one plus the value of magnetic susceptibility gives the relative permeability of a material. Magnetic susceptibility is described as a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
Formula used:
${{\mu }_{r}}=1+\chi $
where, $\chi $ is the magnetic susceptibility
${{\mu }_{r}}$ is the relative permeability.
Complete step by step solution:
Given that magnetic susceptibility is,
\[\]$\begin{align}
& \chi =3\times {{10}^{-4}} \\
& {{\mu }_{r}}=1+\chi \\
& \Rightarrow {{\mu }_{r}}=1+3\times {{10}^{-4}} \\
& \Rightarrow {{\mu }_{r}}=1+0.0003 \\
& \therefore {{\mu }_{r}}=1.0003 \\
\end{align}$
So, the correct answer is “Option C”.
Additional Information: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field.
That is,
$M={{\chi }_{m}}H$ ………(2)
The constant of proportionality ${{\chi }_{m}}$ is the magnetic susceptibility.
Magnetic susceptibility is described as a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
The material which obeys the equation $M={{\chi }_{m}}H$is called linear media.
Let's consider the equation $H=\dfrac{1}{{{\mu }_{0}}}B-M$.
By rearranging the equation we get,
$\begin{align}
& H+M=\dfrac{1}{{{\mu }_{0}}}B \\
& \Rightarrow B={{\mu }_{0}}\left( M+H \right) \\
\end{align}$
Substituting equation (2) in the above equation,
$\begin{align}
& B={{\mu }_{0}}\left( {{\chi }_{m}}H+H \right) \\
& \Rightarrow B={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)H \\
\end{align}$
Thus here B is also proportional to H. Hence,
$B=\mu H$
where,
$\mu ={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)$
$\mu $ is called the permeability of the material and ${{\mu }_{0}}$ is called the permeability of free space.
${{\mu }_{r}}=1+{{\chi }_{m}}$
where, ${{\mu }_{r}}$ is the relative permeability.
Note: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field. Magnetic susceptibility is a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
Formula used:
${{\mu }_{r}}=1+\chi $
where, $\chi $ is the magnetic susceptibility
${{\mu }_{r}}$ is the relative permeability.
Complete step by step solution:
Given that magnetic susceptibility is,
\[\]$\begin{align}
& \chi =3\times {{10}^{-4}} \\
& {{\mu }_{r}}=1+\chi \\
& \Rightarrow {{\mu }_{r}}=1+3\times {{10}^{-4}} \\
& \Rightarrow {{\mu }_{r}}=1+0.0003 \\
& \therefore {{\mu }_{r}}=1.0003 \\
\end{align}$
So, the correct answer is “Option C”.
Additional Information: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field.
That is,
$M={{\chi }_{m}}H$ ………(2)
The constant of proportionality ${{\chi }_{m}}$ is the magnetic susceptibility.
Magnetic susceptibility is described as a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
The material which obeys the equation $M={{\chi }_{m}}H$is called linear media.
Let's consider the equation $H=\dfrac{1}{{{\mu }_{0}}}B-M$.
By rearranging the equation we get,
$\begin{align}
& H+M=\dfrac{1}{{{\mu }_{0}}}B \\
& \Rightarrow B={{\mu }_{0}}\left( M+H \right) \\
\end{align}$
Substituting equation (2) in the above equation,
$\begin{align}
& B={{\mu }_{0}}\left( {{\chi }_{m}}H+H \right) \\
& \Rightarrow B={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)H \\
\end{align}$
Thus here B is also proportional to H. Hence,
$B=\mu H$
where,
$\mu ={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)$
$\mu $ is called the permeability of the material and ${{\mu }_{0}}$ is called the permeability of free space.
${{\mu }_{r}}=1+{{\chi }_{m}}$
where, ${{\mu }_{r}}$ is the relative permeability.
Note: In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when the magnetic field is removed, magnetization disappears. For most of the substances the magnitude of magnetization is proportional to its magnetic field. Magnetic susceptibility is a dimensionless quantity that varies from one substance to another. Magnetic susceptibility is usually positive for paramagnets and negative value for diamagnets.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?