Answer
Verified
376.8k+ views
Hint: To solve this type of question, one must know about the concept of Faraday’s law of EMI. By using this concept, we will find the total amount of charges passing through the circuit by substituting in the formula and solving it to get the required solution.
Formula used:
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
Where,
$e$ is the induced voltage,
$\Delta \Phi $ is the change in magnetic flux and
$\Delta t$ is the change in time.
Complete answer:
From Faraday’s law of EMI,emf induced in the circuit is given by,
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
And if $R$ is the resistance in the circuit then it becomes,
$I = \dfrac{e}{R}$
$ \Rightarrow I = \dfrac{{\Delta \phi }}{{\Delta t.R}}$
So, the total amount of charge passing through the circuit will become,
$
\because Q = I \times \Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{{\Delta t.R}}.\Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{R} \\
$
So, the total amount of charge passing through the circuit is given by $\dfrac{{\Delta \phi }}{R}$ .
Hence, the correct option is B.
Note:
Whenever the magnetic flux linked with a circuit changes an emf is induced in the circuit. The emf stays in the circuit as long as the flux keeps changing. The nature of the induced emf is such that it opposes the cause due to how it is produced, i.e., the flux changes.
Formula used:
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
Where,
$e$ is the induced voltage,
$\Delta \Phi $ is the change in magnetic flux and
$\Delta t$ is the change in time.
Complete answer:
From Faraday’s law of EMI,emf induced in the circuit is given by,
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
And if $R$ is the resistance in the circuit then it becomes,
$I = \dfrac{e}{R}$
$ \Rightarrow I = \dfrac{{\Delta \phi }}{{\Delta t.R}}$
So, the total amount of charge passing through the circuit will become,
$
\because Q = I \times \Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{{\Delta t.R}}.\Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{R} \\
$
So, the total amount of charge passing through the circuit is given by $\dfrac{{\Delta \phi }}{R}$ .
Hence, the correct option is B.
Note:
Whenever the magnetic flux linked with a circuit changes an emf is induced in the circuit. The emf stays in the circuit as long as the flux keeps changing. The nature of the induced emf is such that it opposes the cause due to how it is produced, i.e., the flux changes.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
What is composite fish culture What are the advantages class 12 biology CBSE
What is teminism class 12 biology CBSE