
The magnetic flux through a circuit of resistance $R$ changes by an amount $\Delta \Phi $ in a time $\Delta t$ . Then the total quantity of electric charge $Q$ that passes any point in the circuit during the time $\Delta t$ is represented by:
A. $Q = \dfrac{{\Delta \phi }}{{\Delta t}}$
B. $Q = \dfrac{{\Delta \phi }}{R}$
C. $Q = R.\dfrac{{\Delta \phi }}{{\Delta t}}$
D. $Q = \dfrac{1}{R}\dfrac{{\Delta \phi }}{{\Delta t}}$
Answer
452.1k+ views
Hint: To solve this type of question, one must know about the concept of Faraday’s law of EMI. By using this concept, we will find the total amount of charges passing through the circuit by substituting in the formula and solving it to get the required solution.
Formula used:
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
Where,
$e$ is the induced voltage,
$\Delta \Phi $ is the change in magnetic flux and
$\Delta t$ is the change in time.
Complete answer:
From Faraday’s law of EMI,emf induced in the circuit is given by,
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
And if $R$ is the resistance in the circuit then it becomes,
$I = \dfrac{e}{R}$
$ \Rightarrow I = \dfrac{{\Delta \phi }}{{\Delta t.R}}$
So, the total amount of charge passing through the circuit will become,
$
\because Q = I \times \Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{{\Delta t.R}}.\Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{R} \\
$
So, the total amount of charge passing through the circuit is given by $\dfrac{{\Delta \phi }}{R}$ .
Hence, the correct option is B.
Note:
Whenever the magnetic flux linked with a circuit changes an emf is induced in the circuit. The emf stays in the circuit as long as the flux keeps changing. The nature of the induced emf is such that it opposes the cause due to how it is produced, i.e., the flux changes.
Formula used:
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
Where,
$e$ is the induced voltage,
$\Delta \Phi $ is the change in magnetic flux and
$\Delta t$ is the change in time.
Complete answer:
From Faraday’s law of EMI,emf induced in the circuit is given by,
$e = \dfrac{{\Delta \phi }}{{\Delta t}}$
And if $R$ is the resistance in the circuit then it becomes,
$I = \dfrac{e}{R}$
$ \Rightarrow I = \dfrac{{\Delta \phi }}{{\Delta t.R}}$
So, the total amount of charge passing through the circuit will become,
$
\because Q = I \times \Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{{\Delta t.R}}.\Delta t \\
\Rightarrow Q = \dfrac{{\Delta \phi }}{R} \\
$
So, the total amount of charge passing through the circuit is given by $\dfrac{{\Delta \phi }}{R}$ .
Hence, the correct option is B.
Note:
Whenever the magnetic flux linked with a circuit changes an emf is induced in the circuit. The emf stays in the circuit as long as the flux keeps changing. The nature of the induced emf is such that it opposes the cause due to how it is produced, i.e., the flux changes.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
When was the first election held in India a 194748 class 12 sst CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the monomers and polymers of carbohydrate class 12 chemistry CBSE

Amount of light entering the eye is controlled by A class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
