Answer
Verified
442.2k+ views
Hint: Hard water is a mixture of magnesium and calcium together with chloride, bicarbonate, sulphate, etc. Molecular weight of calcium carbonate is 100gm/mol and here the mass of water is 1000g. To find the degree of hardness in ppm we have a formula,
DOH (in terms of $CaC{{O}_{3}}$ )= $\dfrac{mass\,of\,CaC{{O}_{3}}}{mass\,of\,{{H}_{2}}O}\times {{10}^{6}}$
Complete step by step solution:
From your chemistry lessons you have learned about the hardness of water and what is hard water and its constituents. Hard water is the mixture of magnesium and calcium together with sulphate, bicarbonate, chloride, etc. Carbonate which is made up of 1 carbon and 3 atoms of oxygen and they together combine to form carbonate molecules $(C{{O}_{3}})$.
-Here carbonate is an anion which has negative charge on it so for the stability it gets associated with a positively charged ion or we can say cation. The ion can be metals or hydrogen like calcium, magnesium, potassium, etc. And in this way calcium carbonate $(CaC{{O}_{3}})$and magnesium carbonate are formed.
-The hardness of water is usually expressed in ppm and measured in terms of calcium carbonate because the molecular weight of $CaC{{O}_{3}}$ is 100g/mol and it will be easier to calculate the values in respect to 100 as comparison with the molecular weight of other agents that cause hardness . And to calculate the hardness it requires one standard value which is used as a constant to equate with and that makes it easy to calculate the hardness of water in terms of ppm.
-In the question the amount of $CaS{{O}_{4}}$ is given as ${{10}^{-3}}$ M
-So, ${{10}^{-3}}$ molar $CaS{{O}_{4}}$ = ${{10}^{-3}}$ moles of $CaS{{O}_{4}}$ present in 1 litre.
-Here we have to find the hardness of water in terms of $CaC{{O}_{3}}$,
-Therefore moles of $CaC{{O}_{3}}$= moles of $CaS{{O}_{4}}$
Molecular weight of calcium carbonate = 100 g/mol
Mass of water = 100g
-So, the degree of hardness in term of $CaC{{O}_{3}}$ in ppm is,
-DOH(in terms of $CaC{{O}_{3}}$)=$\dfrac{mass\,of\,CaC{{O}_{3}}}{mass\,of\,{{H}_{2}}O}\times {{10}^{6}}$
-DOH (in terms of $CaC{{O}_{3}}$)=$\dfrac{moles\,of\,CaC{{O}_{3}}\times molecular\,weight\,of\,CaC{{O}_{3}}\,}{mass\,of\,{{H}_{2}}O}$
-Therefore, DOH (in terms of $CaC{{O}_{3}}$) =$\dfrac{{{10}^{-3}}\times 100}{1000}\times {{10}^{6}}=100ppm$
Thus the correct option will be (A).
Note: The hardness of water is not only due to calcium but magnesium and other multivalent cations also present to some extent in the hard water. Calcium carbonates are essentially present in the form of limestone and chalk. When we tell that hardness is in terms of calcium carbonate then it is calculated as if magnesium or other cations were present there as calcium.
DOH (in terms of $CaC{{O}_{3}}$ )= $\dfrac{mass\,of\,CaC{{O}_{3}}}{mass\,of\,{{H}_{2}}O}\times {{10}^{6}}$
Complete step by step solution:
From your chemistry lessons you have learned about the hardness of water and what is hard water and its constituents. Hard water is the mixture of magnesium and calcium together with sulphate, bicarbonate, chloride, etc. Carbonate which is made up of 1 carbon and 3 atoms of oxygen and they together combine to form carbonate molecules $(C{{O}_{3}})$.
-Here carbonate is an anion which has negative charge on it so for the stability it gets associated with a positively charged ion or we can say cation. The ion can be metals or hydrogen like calcium, magnesium, potassium, etc. And in this way calcium carbonate $(CaC{{O}_{3}})$and magnesium carbonate are formed.
-The hardness of water is usually expressed in ppm and measured in terms of calcium carbonate because the molecular weight of $CaC{{O}_{3}}$ is 100g/mol and it will be easier to calculate the values in respect to 100 as comparison with the molecular weight of other agents that cause hardness . And to calculate the hardness it requires one standard value which is used as a constant to equate with and that makes it easy to calculate the hardness of water in terms of ppm.
-In the question the amount of $CaS{{O}_{4}}$ is given as ${{10}^{-3}}$ M
-So, ${{10}^{-3}}$ molar $CaS{{O}_{4}}$ = ${{10}^{-3}}$ moles of $CaS{{O}_{4}}$ present in 1 litre.
-Here we have to find the hardness of water in terms of $CaC{{O}_{3}}$,
-Therefore moles of $CaC{{O}_{3}}$= moles of $CaS{{O}_{4}}$
Molecular weight of calcium carbonate = 100 g/mol
Mass of water = 100g
-So, the degree of hardness in term of $CaC{{O}_{3}}$ in ppm is,
-DOH(in terms of $CaC{{O}_{3}}$)=$\dfrac{mass\,of\,CaC{{O}_{3}}}{mass\,of\,{{H}_{2}}O}\times {{10}^{6}}$
-DOH (in terms of $CaC{{O}_{3}}$)=$\dfrac{moles\,of\,CaC{{O}_{3}}\times molecular\,weight\,of\,CaC{{O}_{3}}\,}{mass\,of\,{{H}_{2}}O}$
-Therefore, DOH (in terms of $CaC{{O}_{3}}$) =$\dfrac{{{10}^{-3}}\times 100}{1000}\times {{10}^{6}}=100ppm$
Thus the correct option will be (A).
Note: The hardness of water is not only due to calcium but magnesium and other multivalent cations also present to some extent in the hard water. Calcium carbonates are essentially present in the form of limestone and chalk. When we tell that hardness is in terms of calcium carbonate then it is calculated as if magnesium or other cations were present there as calcium.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE