
State and prove the Pythagoras theorem.
Answer
579.3k+ views
Hint: Draw a perpendicular on AC from B and use angle-angle similarity to prove the theorem.
Complete step-by-step answer:
Pythagoras theorem states that “ In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.
The sides of the right-angled triangle are called base, perpendicular and hypotenuse .
According to Pythagoras theorem ,
${({\text{AC)}}^2} = {({\text{AB)}}^2}{\text{ + (BC}}{{\text{)}}^2}$
Proof:
Given, a triangle ABC in which $\angle {\text{ABC is 9}}{{\text{0}}^0}$.
Construction: Draw a perpendicular BD on AC i.e. BD $ \bot $ AC.
In $\Delta {\text{ABD and }}\Delta {\text{ABC }}$ we have,
$\angle {\text{BAD = }}\angle {\text{BAC }}$i.e. $\angle {\text{A}}$ is common in both triangles.
$\angle {\text{ABC = }}\angle {\text{ADB = 9}}{{\text{0}}^0}$
Therefore $\Delta {\text{ABC}} \sim \Delta {\text{ABD }}$( By AA similarity i.e. angle-angle similarity)
So,$
\Rightarrow \dfrac{{{\text{AD}}}}{{{\text{AB}}}} = \dfrac{{{\text{AB}}}}{{{\text{AC}}}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ = AD}} \times {\text{AC }}...{\text{(1)}} \\
$
In $\Delta {\text{BDC and }}\Delta {\text{ABC }}$ we have,
$\angle {\text{BCD = }}\angle {\text{BCA }}$i.e. $\angle {\text{C}}$ is common in both triangles.
$\angle {\text{ABC = }}\angle {\text{ADC = 9}}{{\text{0}}^0}$
Therefore $\Delta {\text{ABC}} \sim \Delta {\text{BDC }}$( By AA similarity i.e. angle-angle similarity)
So,$
\Rightarrow \dfrac{{{\text{DC}}}}{{{\text{BC}}}} = \dfrac{{{\text{BC}}}}{{{\text{AC}}}} \\
\Rightarrow {\text{B}}{{\text{C}}^2}{\text{ = AC}} \times {\text{DC }}...{\text{(2)}} \\
$
Adding equation (1) and (2) , we get
$
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = AD}} \times {\text{AC + AC}} \times {\text{ DC}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = AC(AD + DC)}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = AC(AC)}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = A}}{{\text{C}}^2} \\
$
Hence, proved.
Note: In a right angled triangle , hypotenuse is the longest side of the triangle and is opposite to the right angle i.e. ${90^0}$. By drawing a perpendicular from point B and dividing the triangle ABC into 2 parts and using angle-angle similarity to prove the Pythagoras theorem.
Complete step-by-step answer:
Pythagoras theorem states that “ In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.
The sides of the right-angled triangle are called base, perpendicular and hypotenuse .
According to Pythagoras theorem ,
${({\text{AC)}}^2} = {({\text{AB)}}^2}{\text{ + (BC}}{{\text{)}}^2}$
Proof:
Given, a triangle ABC in which $\angle {\text{ABC is 9}}{{\text{0}}^0}$.
Construction: Draw a perpendicular BD on AC i.e. BD $ \bot $ AC.
In $\Delta {\text{ABD and }}\Delta {\text{ABC }}$ we have,
$\angle {\text{BAD = }}\angle {\text{BAC }}$i.e. $\angle {\text{A}}$ is common in both triangles.
$\angle {\text{ABC = }}\angle {\text{ADB = 9}}{{\text{0}}^0}$
Therefore $\Delta {\text{ABC}} \sim \Delta {\text{ABD }}$( By AA similarity i.e. angle-angle similarity)
So,$
\Rightarrow \dfrac{{{\text{AD}}}}{{{\text{AB}}}} = \dfrac{{{\text{AB}}}}{{{\text{AC}}}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ = AD}} \times {\text{AC }}...{\text{(1)}} \\
$
In $\Delta {\text{BDC and }}\Delta {\text{ABC }}$ we have,
$\angle {\text{BCD = }}\angle {\text{BCA }}$i.e. $\angle {\text{C}}$ is common in both triangles.
$\angle {\text{ABC = }}\angle {\text{ADC = 9}}{{\text{0}}^0}$
Therefore $\Delta {\text{ABC}} \sim \Delta {\text{BDC }}$( By AA similarity i.e. angle-angle similarity)
So,$
\Rightarrow \dfrac{{{\text{DC}}}}{{{\text{BC}}}} = \dfrac{{{\text{BC}}}}{{{\text{AC}}}} \\
\Rightarrow {\text{B}}{{\text{C}}^2}{\text{ = AC}} \times {\text{DC }}...{\text{(2)}} \\
$
Adding equation (1) and (2) , we get
$
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = AD}} \times {\text{AC + AC}} \times {\text{ DC}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = AC(AD + DC)}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = AC(AC)}} \\
\Rightarrow {\text{A}}{{\text{B}}^2}{\text{ + B}}{{\text{C}}^2}{\text{ = A}}{{\text{C}}^2} \\
$
Hence, proved.
Note: In a right angled triangle , hypotenuse is the longest side of the triangle and is opposite to the right angle i.e. ${90^0}$. By drawing a perpendicular from point B and dividing the triangle ABC into 2 parts and using angle-angle similarity to prove the Pythagoras theorem.
Recently Updated Pages
Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Which is the main party in the National Democratic class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

