
State and explain Ohm’s Law.
Answer
518.4k+ views
Hint: Ohm’s law is one of the most basic and important laws of electric circuits. First we will define or state the Ohm’s Law and then we will formulate each of the components of Ohm’s Law equation. And also discuss the implementation with an example.
Complete answer:
Ohm’s law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperature remain constant. Or, it states that electric current is directly proportional to its potential difference with the constant temperature.Mathematically, the relationship between resistance, voltage and electric current can be written as Ohm’s as Ohm’s Law equation:
$R = \dfrac{V}{I}$ ,
In the equation, R is Resistance and has units of ohms, with symbol $\Omega $ .
From the above equation, we can formulate both Voltage and Electric current as well:
$V = I.R$ and
$I = \dfrac{V}{R}$
Ohm’s law only holds true if the provided temperature and the other physical factors remain constant. In specific parts, expanding the current raises the temperature. An illustration of this is the fiber of a light, wherein the temperature ascends as the current is increased. For this situation, Ohm's law can't be applied. The light bulb filament violates Ohm’s Law.
Note: Ohm’s law is not applicable for diodes and transistors as they allow the current to flow through in one direction only. For non-straight electrical components with boundaries like capacitance, opposition and so forth the voltage and flow won't be consistent regarding time making it hard to utilize Ohm's law.
Complete answer:
Ohm’s law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperature remain constant. Or, it states that electric current is directly proportional to its potential difference with the constant temperature.Mathematically, the relationship between resistance, voltage and electric current can be written as Ohm’s as Ohm’s Law equation:
$R = \dfrac{V}{I}$ ,
In the equation, R is Resistance and has units of ohms, with symbol $\Omega $ .
From the above equation, we can formulate both Voltage and Electric current as well:
$V = I.R$ and
$I = \dfrac{V}{R}$
Ohm’s law only holds true if the provided temperature and the other physical factors remain constant. In specific parts, expanding the current raises the temperature. An illustration of this is the fiber of a light, wherein the temperature ascends as the current is increased. For this situation, Ohm's law can't be applied. The light bulb filament violates Ohm’s Law.
Note: Ohm’s law is not applicable for diodes and transistors as they allow the current to flow through in one direction only. For non-straight electrical components with boundaries like capacitance, opposition and so forth the voltage and flow won't be consistent regarding time making it hard to utilize Ohm's law.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
When was the first election held in India a 194748 class 12 sst CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the monomers and polymers of carbohydrate class 12 chemistry CBSE

Amount of light entering the eye is controlled by A class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
