
Solve the given cubic equation:- $16{{\cos }^{6}}x-25{{\cos }^{4}}x+11{{\cos }^{2}}x-2=0$
Answer
570.3k+ views
Hint: Take $\text{co}{{\text{s}}^{\text{2}}}\text{x=t}$to form a cubic equation. The reduced cubic equation’s one factor can be formed by using the hit and trial method and reducing it to a quadratic equation. Solve this quadratic equation by making a factor.
Formula used:
By substitution find one factor of cubic equation & then make factors of a quadratic equation.
$\begin{align}
& a{{x}^{2}}+bx+c=0 \\
& x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Complete step-by-step answer:
$16{{\cos }^{6}}x-25{{\cos }^{4}}x+11{{\cos }^{2}}x-2=0$
Put
$\begin{align}
& {{\cos }^{2}}x=t \\
& 16\left[ {{t}^{3}} \right]-25\text{ }{{t}^{2}}+11\text{ }t-2=0......(1) \\
& \text{By substitution we find one factor of cubic equation}\text{.} \\
\end{align}$
Put
$t=1$ in equation (1)
$\begin{align}
& 16{{\left( 1 \right)}^{3}}-25{{\left( 1 \right)}^{2}}+11\left( 1 \right)-2 \\
& =16-25+11-2 \\
& =27-27=0 \\
\end{align}$
Therefore t = 1 is the solution of cubic equation $16\text{ }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2$.
[By long division]
$\text{16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ t}-2=\left( t-1 \right)\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
Now we will solve the quadratic equation
$\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
\[\begin{align}
&\Rightarrow 16\text{ }{{t}^{2}}-9\text{ }t+2=0 \\
& \Rightarrow a=16\text{ } \\
&\Rightarrow b=-9 \\
& c=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow t =\dfrac{-\left( -9 \right)\pm \sqrt{{{\left( -9 \right)}^{2}}-4\times 16\times 2}}{2\times 16} \\
& \Rightarrow t =\dfrac{9\pm \sqrt{81-128}}{32} \\
&\Rightarrow t=\dfrac{9\pm \sqrt{-47}}{32}\text{ No, real roots because}\sqrt{-47}\text{ is not a real number} \\
& \text{Hence 16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2=\left( t-1 \right)\left( 16\,{{t}^{2}}-9t+2 \right) \\
\end{align}\]
\[\text{Substitute }=t={{\cos }^{2}}~x\]
$\begin{align}
& \therefore \left( {{\cos }^{2}}~x-1 \right)\left( 16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2 \right)=0 \\
& \Rightarrow {{\cos }^{2}}~x-1=0\text{ or }16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2=0 \\
&\Rightarrow {{\cos }^{2}}~x=1 \\
& \Rightarrow {{\cos }^{2}}~x=\pm 1 \\
\end{align}$
Additional information:
We can solve quadratic problem by splitting the middle term if we are not able to solve the quadratic problem by splitting the middle term we can use $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ formula.
Note: For higher powers we have to substitute like in this power was 6. So we substitute ${{\cos }^{2}}~x=t$ so we get a cubic calculation then factorize.
Formula used:
By substitution find one factor of cubic equation & then make factors of a quadratic equation.
$\begin{align}
& a{{x}^{2}}+bx+c=0 \\
& x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
\end{align}$
Complete step-by-step answer:
$16{{\cos }^{6}}x-25{{\cos }^{4}}x+11{{\cos }^{2}}x-2=0$
Put
$\begin{align}
& {{\cos }^{2}}x=t \\
& 16\left[ {{t}^{3}} \right]-25\text{ }{{t}^{2}}+11\text{ }t-2=0......(1) \\
& \text{By substitution we find one factor of cubic equation}\text{.} \\
\end{align}$
Put
$t=1$ in equation (1)
$\begin{align}
& 16{{\left( 1 \right)}^{3}}-25{{\left( 1 \right)}^{2}}+11\left( 1 \right)-2 \\
& =16-25+11-2 \\
& =27-27=0 \\
\end{align}$
Therefore t = 1 is the solution of cubic equation $16\text{ }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2$.
[By long division]
$\text{16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ t}-2=\left( t-1 \right)\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
Now we will solve the quadratic equation
$\left( 16\text{ }{{t}^{2}}-9t+2 \right)$
\[\begin{align}
&\Rightarrow 16\text{ }{{t}^{2}}-9\text{ }t+2=0 \\
& \Rightarrow a=16\text{ } \\
&\Rightarrow b=-9 \\
& c=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow t =\dfrac{-\left( -9 \right)\pm \sqrt{{{\left( -9 \right)}^{2}}-4\times 16\times 2}}{2\times 16} \\
& \Rightarrow t =\dfrac{9\pm \sqrt{81-128}}{32} \\
&\Rightarrow t=\dfrac{9\pm \sqrt{-47}}{32}\text{ No, real roots because}\sqrt{-47}\text{ is not a real number} \\
& \text{Hence 16 }{{t}^{3}}-25\text{ }{{t}^{2}}+11\text{ }t-2=\left( t-1 \right)\left( 16\,{{t}^{2}}-9t+2 \right) \\
\end{align}\]
\[\text{Substitute }=t={{\cos }^{2}}~x\]
$\begin{align}
& \therefore \left( {{\cos }^{2}}~x-1 \right)\left( 16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2 \right)=0 \\
& \Rightarrow {{\cos }^{2}}~x-1=0\text{ or }16{{\cos }^{4}}~x-9{{\cos }^{2}}~x+2=0 \\
&\Rightarrow {{\cos }^{2}}~x=1 \\
& \Rightarrow {{\cos }^{2}}~x=\pm 1 \\
\end{align}$
Additional information:
We can solve quadratic problem by splitting the middle term if we are not able to solve the quadratic problem by splitting the middle term we can use $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ formula.
Note: For higher powers we have to substitute like in this power was 6. So we substitute ${{\cos }^{2}}~x=t$ so we get a cubic calculation then factorize.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

