
Prove that $\dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = 1 + \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right)$.
Answer
581.7k+ views
Hint- Here, we will proceed by converting all the trigonometric functions given in the LHS of the equation which we needed to prove and then taking the LCM. After this, we will use the formula ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ in order to get the RHS of the equation we needed to prove.
Complete step-by-step answer:
To prove: $\dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = 1 + \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right)$
Since, $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$ and $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$
Taking the LHS of the equation we need to prove and using the above formulas, we have
$ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}$
By taking separately the LCM of the two terms given in the denominator of the RHS of the above equation as sinA and cosA respectively, we get
$
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{\left( {\dfrac{{\sin {\text{A}} - \cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{\left( {\dfrac{{\cos {\text{A}} - \sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\cos {\text{A}} - \sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} - \dfrac{{{{\left( {\cos {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
$
By taking the LCM of the terms given in the RHS of the above equation as (sinA)(cosA)(sinA - cosA), we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}\left( {\sin {\text{A}}} \right) - {{\left( {\cos {\text{A}}} \right)}^2}\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^3} - {{\left( {\cos {\text{A}}} \right)}^3}}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\]
Using the formula ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}}\]
By cancelling (sinA - cosA) from the numerator and the denominator of the RHS of the above equation, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}\]
Using the identity \[{\left( {\sin {\text{A}}} \right)^2} + {\left( {\cos {\text{A}}} \right)^2} = 1\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{1 + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{1}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {\dfrac{1}{{\cos {\text{A}}}}} \right) + 1 \\
\]
Using the formulas \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\] and \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {{\text{cosecA}}} \right)\left( {\sec {\text{A}}} \right) + 1 \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right) + 1 \\
\]
The above equation is the same equation which we needed to prove.
Note- In this particular problem, we have used the basic definitions of tangent trigonometric function, cotangent trigonometric function, secant trigonometric function and cosine trigonometric function as given by $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$, $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] and \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\].
Complete step-by-step answer:
To prove: $\dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = 1 + \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right)$
Since, $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$ and $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$
Taking the LHS of the equation we need to prove and using the above formulas, we have
$ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{1 - \left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}$
By taking separately the LCM of the two terms given in the denominator of the RHS of the above equation as sinA and cosA respectively, we get
$
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}}{{\left( {\dfrac{{\sin {\text{A}} - \cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}} + \dfrac{{\left( {\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}} \right)}}{{\left( {\dfrac{{\cos {\text{A}} - \sin {\text{A}}}}{{\cos {\text{A}}}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\cos {\text{A}} - \sin {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} - \dfrac{{{{\left( {\cos {\text{A}}} \right)}^2}}}{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left( {\sin {\text{A}}} \right)}} \\
$
By taking the LCM of the terms given in the RHS of the above equation as (sinA)(cosA)(sinA - cosA), we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^2}\left( {\sin {\text{A}}} \right) - {{\left( {\cos {\text{A}}} \right)}^2}\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{{{\left( {\sin {\text{A}}} \right)}^3} - {{\left( {\cos {\text{A}}} \right)}^3}}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}} \\
\]
Using the formula ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left( {\sin {\text{A}} - \cos {\text{A}}} \right)\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)\left( {\sin {\text{A}} - \cos {\text{A}}} \right)}}\]
By cancelling (sinA - cosA) from the numerator and the denominator of the RHS of the above equation, we get
\[ \Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2} + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)} \right]}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}\]
Using the identity \[{\left( {\sin {\text{A}}} \right)^2} + {\left( {\cos {\text{A}}} \right)^2} = 1\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{{1 + \left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \dfrac{1}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} + \dfrac{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}}{{\left( {\sin {\text{A}}} \right)\left( {\cos {\text{A}}} \right)}} \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {\dfrac{1}{{\cos {\text{A}}}}} \right) + 1 \\
\]
Using the formulas \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\] and \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] in the above equation, we get
\[
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {{\text{cosecA}}} \right)\left( {\sec {\text{A}}} \right) + 1 \\
\Rightarrow \dfrac{{\tan {\text{A}}}}{{1 - \cot {\text{A}}}} + \dfrac{{\cot {\text{A}}}}{{1 - \tan {\text{A}}}} = \left( {\sec {\text{A}}} \right)\left( {{\text{cosecA}}} \right) + 1 \\
\]
The above equation is the same equation which we needed to prove.
Note- In this particular problem, we have used the basic definitions of tangent trigonometric function, cotangent trigonometric function, secant trigonometric function and cosine trigonometric function as given by $\tan {\text{A}} = \dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$, $\cot {\text{A}} = \dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, \[\sec {\text{A}} = \dfrac{1}{{\cos {\text{A}}}}\] and \[{\text{cosecA}} = \dfrac{1}{{\sin {\text{A}}}}\].
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
