
What is meant by magnification of lenses? Write it’s expression.
Answer
501.6k+ views
Hint
Magnification can be defined with the height of the image as well as the distance of the object. It is the ratio between height of object and height of image. It is denoted by “m” in the mathematical formula.
Complete Step By Step Solution
Let’s begin with what is Magnification. It is described as the ratio of a height of as Image to height of an object which means size of image to size of object. We can also term it as the distance of an image from the lens to the distance of an object from the lens.
So. In a formatted way. It can be written as
Magnification (m) $ = \dfrac{{{\text{Size}}\;{\text{of}}\;{\text{the}}\;{\text{Image}}}}{{{\text{Size}}\;{\text{of}}\;{\text{the}}\;{\text{object}}}}$
$ \Rightarrow m = \dfrac{{{h_2}}}{{{h_1}}}$
Or we use distance then-
$ \Rightarrow \;{\text{magnification}}\;{\text{(m)}}\;{\text{ = }}\;\dfrac{{{\text{Image}}\;{\text{distance}}}}{{{\text{object}}\;{\text{distance}}}}$
$ \Rightarrow m = \dfrac{v}{u}$
Where, $v$ − Ιmage distance from the lens,
$u$ − object distance from the lens.
Note
The Value of Magnification describes the Property of Image. Where $\left| m \right| > 1$ means enlarged and $\left| m \right| < 1$ means smaller than the object. The sign denotes the property of the same side or on the opposite side of the lens.
Magnification can be defined with the height of the image as well as the distance of the object. It is the ratio between height of object and height of image. It is denoted by “m” in the mathematical formula.
Complete Step By Step Solution
Let’s begin with what is Magnification. It is described as the ratio of a height of as Image to height of an object which means size of image to size of object. We can also term it as the distance of an image from the lens to the distance of an object from the lens.
So. In a formatted way. It can be written as
Magnification (m) $ = \dfrac{{{\text{Size}}\;{\text{of}}\;{\text{the}}\;{\text{Image}}}}{{{\text{Size}}\;{\text{of}}\;{\text{the}}\;{\text{object}}}}$
$ \Rightarrow m = \dfrac{{{h_2}}}{{{h_1}}}$
Or we use distance then-
$ \Rightarrow \;{\text{magnification}}\;{\text{(m)}}\;{\text{ = }}\;\dfrac{{{\text{Image}}\;{\text{distance}}}}{{{\text{object}}\;{\text{distance}}}}$
$ \Rightarrow m = \dfrac{v}{u}$
Where, $v$ − Ιmage distance from the lens,
$u$ − object distance from the lens.
Note
The Value of Magnification describes the Property of Image. Where $\left| m \right| > 1$ means enlarged and $\left| m \right| < 1$ means smaller than the object. The sign denotes the property of the same side or on the opposite side of the lens.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
