
In an orthorhombic unit cell, the value of a, b and c are respectively \[{\rm{4}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} \], \[8.6\,\mathop {\rm{A}}\limits^{\rm{o}} \] and \[8.3\,\mathop {\rm{A}}\limits^{\rm{o}} \]. Given the molecular mass of the solute is \[{\rm{155}}\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\]and that of density is \[\rm{3.3 \,gm}/\rm{cc}\], the number of formula units per unit cell is
(A) \[2\]
(B) \[3\]
(C) \[4\]
(D) \[{\rm{6}}\]
Answer
489k+ views
Hint: As we know that, the density is measured by the packing of the atoms in the unit cell, the total number of formula unit cells tells us how many formulae can be generated in the given unit cell.
Complete step by step answer
Formula unit is generated by the total number of ions (Cation or anions) in the unit cell such as in rock salt, the number of cation per unit cell is \[4\] and the number of anions per unit cell is \[4\] so, therefore, the total number of formula per unit cell will be \[4\].
Density of the orthorhombic unit cell is calculated by the formula-
\[{\rm{d = }}\dfrac{{{\rm{Z}}\,{\rm{ \times M}}\,\,}}{{{{\rm{N}}_{\rm{a}}}{\rm{ \times }}\,{\rm{a \times b}}\,{\rm{ \times }}\,{\rm{c}}}}\]
Where, \[{\rm{Z}}\] is the number of ions per unit cell, \[{\rm{M}}\]is the molecular mass of the compound, \[{{\rm{N}}_{\rm{a}}}\]is the Avogadro constant and a, b and c are the edge length.
In this question we are given as
\[{\rm{M}}\,{\rm{ = }}\,{\rm{155}}\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\]
\[{\rm{a}} = {\rm{4}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} = {\rm{4}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\]
\[{\rm{b}} = {\rm{8}}{\rm{.6}}\,\mathop {\rm{A}}\limits^{\rm{o}} = {\rm{8}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\]
\[{\rm{c}} = {\rm{8}}{\rm{.3}}\,\mathop {\rm{A}}\limits^{\rm{o}} = {\rm{8}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\]
$\rm{d=3.3\, gm}/\rm{cc}$
Now we are left with value of
\[{\rm{Z}}\,{\rm{ = }}\,{\rm{?}}\]
By putting above values in the above equation, we find as
${\rm{Z}}$ ${\rm{ = }}\,$ $\dfrac{6.022\times{10}^{23} {\rm{mol}^{-1}} \times {\rm{4}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\times{\rm{8}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}} \times {\rm{8}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}} \rm{d=3.3\, gm}/\rm{cc}}{155{\rm{gmol}}^{-1}} $
${\rm{Z}}$ ${\rm{ = }} \rm{3.84} $
${\rm{Z}} {\rm{ \simeq }} \rm{4}$
Therefore, the correct option is C. 4
Note:
While calculating the density or numerical question, we generally forget unit conversions, that make us very disappointed, so, try to solve numerical with units.
In the thermodynamics and solution chapter, there are more unit conversions, so try to practice more numerically.
Complete step by step answer
Formula unit is generated by the total number of ions (Cation or anions) in the unit cell such as in rock salt, the number of cation per unit cell is \[4\] and the number of anions per unit cell is \[4\] so, therefore, the total number of formula per unit cell will be \[4\].
Density of the orthorhombic unit cell is calculated by the formula-
\[{\rm{d = }}\dfrac{{{\rm{Z}}\,{\rm{ \times M}}\,\,}}{{{{\rm{N}}_{\rm{a}}}{\rm{ \times }}\,{\rm{a \times b}}\,{\rm{ \times }}\,{\rm{c}}}}\]
Where, \[{\rm{Z}}\] is the number of ions per unit cell, \[{\rm{M}}\]is the molecular mass of the compound, \[{{\rm{N}}_{\rm{a}}}\]is the Avogadro constant and a, b and c are the edge length.
In this question we are given as
\[{\rm{M}}\,{\rm{ = }}\,{\rm{155}}\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\]
\[{\rm{a}} = {\rm{4}}{\rm{.2}}\,\mathop {\rm{A}}\limits^{\rm{o}} = {\rm{4}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\]
\[{\rm{b}} = {\rm{8}}{\rm{.6}}\,\mathop {\rm{A}}\limits^{\rm{o}} = {\rm{8}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\]
\[{\rm{c}} = {\rm{8}}{\rm{.3}}\,\mathop {\rm{A}}\limits^{\rm{o}} = {\rm{8}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\]
$\rm{d=3.3\, gm}/\rm{cc}$
Now we are left with value of
\[{\rm{Z}}\,{\rm{ = }}\,{\rm{?}}\]
By putting above values in the above equation, we find as
${\rm{Z}}$ ${\rm{ = }}\,$ $\dfrac{6.022\times{10}^{23} {\rm{mol}^{-1}} \times {\rm{4}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}}\times{\rm{8}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}} \times {\rm{8}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\,{\rm{cm}} \rm{d=3.3\, gm}/\rm{cc}}{155{\rm{gmol}}^{-1}} $
${\rm{Z}}$ ${\rm{ = }} \rm{3.84} $
${\rm{Z}} {\rm{ \simeq }} \rm{4}$
Therefore, the correct option is C. 4
Note:
While calculating the density or numerical question, we generally forget unit conversions, that make us very disappointed, so, try to solve numerical with units.
In the thermodynamics and solution chapter, there are more unit conversions, so try to practice more numerically.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
