
If $ x $ satisfies $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ , then
A. $ x\in \varnothing $
B. $ x\in \left[ 1,2 \right] $
C. $ x\in \left[ 3,\infty \right) $
D. $ x\in \left( -\infty ,\infty \right) $
Answer
472.2k+ views
Hint: We express the whole domain into three parts for the equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ . We break it according to the equations. We then find the solutions for the equation and check if the intervals satisfy or not. Modulus function $ f\left( x \right)=\left| x \right| $ works as the distance of the number from 0. The number can be both positive and negative but the distance of that number will always be positive. Distance can never be negative.
Complete step-by-step answer:
We try to break the whole domain into three parts for the equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ .
The divisions are $ x\in \left( -\infty ,1 \right)\cup \left[ 1,2 \right)\cup \left[ 2,\infty \right) $ .
Therefore, for $ x\in \left( -\infty ,1 \right) $ , the values are
\[\begin{align}
& \left| {{x}^{2}}-3x+2 \right|={{x}^{2}}-3x+2 \\
& \left| x-1 \right|=-\left( x-1 \right)=1-x \\
\end{align}\]
The equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ becomes
$ {{x}^{2}}-3x+2+1-x=x-3 $ .
Simplifying we get
\[\begin{align}
& {{x}^{2}}-3x+2+1-x=x-3 \\
& \Rightarrow {{x}^{2}}-5x+6=0 \\
& \Rightarrow {{x}^{2}}-2x-3x+6=0 \\
& \Rightarrow x\left( x-2 \right)-3\left( x-2 \right)=0 \\
& \Rightarrow \left( x-2 \right)\left( x-3 \right)=0 \\
& \Rightarrow x=2,3 \\
\end{align}\]
The conditions $ x\in \left( -\infty ,1 \right) $ and \[x=2,3\] can’t happen together. We don’t have any solution in the interval $ x\in \left( -\infty ,1 \right) $ .
Therefore, for $ x\in \left[ 1,2 \right) $ , the values are
\[\begin{align}
& \left| {{x}^{2}}-3x+2 \right|=-\left( {{x}^{2}}-3x+2 \right)=-{{x}^{2}}+3x-2 \\
& \left| x-1 \right|=x-1 \\
\end{align}\].
The equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ becomes
\[-{{x}^{2}}+3x-2+x-1=x-3\].
Simplifying we get
\[\begin{align}
& -{{x}^{2}}+3x-2+x-1=x-3 \\
& \Rightarrow {{x}^{2}}-3x=0 \\
& \Rightarrow x\left( x-3 \right)=0 \\
& \Rightarrow x=0,3 \\
\end{align}\]
The conditions $ x\in \left[ 1,2 \right) $ and \[x=0,3\] can happen together. We have solutions in the interval $ x\in \left[ 1,2 \right) $ .
Therefore, for $ x\in \left[ 2,\infty \right) $ , the values are
\[\begin{align}
& \left| {{x}^{2}}-3x+2 \right|={{x}^{2}}-3x+2 \\
& \left| x-1 \right|=x-1 \\
\end{align}\].
The equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ becomes
\[{{x}^{2}}-3x+2+x-1=x-3\].
Simplifying we get
\[\begin{align}
& {{x}^{2}}-3x+2+x-1=x-3 \\
& \Rightarrow {{x}^{2}}-3x+4=0 \\
& \Rightarrow x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left( -3 \right)}^{2}}-4\times 4\times 1}}{2\times 1}=\dfrac{3\pm i\sqrt{7}}{2} \\
\end{align}\]
There is no real solution in $ x\in \left[ 2,\infty \right) $ .
Therefore, the solution is $ x\in \varnothing $ . The correct option is A
So, the correct answer is “Option A”.
Note: In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $ \left| x \right| $ . We can say $ \left| x \right|\ge 0 $ .
We can express the function $ f\left( x \right)=\left| x \right| $ as $ f\left( x \right)=\left\{ \begin{align}
& x\left( x\ge 0 \right) \\
& -x\left( x<0 \right) \\
\end{align} \right. $ .
We can write $ f\left( x \right)=\left| x \right|=\pm x $ depending on the value of the number x.
Complete step-by-step answer:
We try to break the whole domain into three parts for the equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ .
The divisions are $ x\in \left( -\infty ,1 \right)\cup \left[ 1,2 \right)\cup \left[ 2,\infty \right) $ .
Therefore, for $ x\in \left( -\infty ,1 \right) $ , the values are
\[\begin{align}
& \left| {{x}^{2}}-3x+2 \right|={{x}^{2}}-3x+2 \\
& \left| x-1 \right|=-\left( x-1 \right)=1-x \\
\end{align}\]
The equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ becomes
$ {{x}^{2}}-3x+2+1-x=x-3 $ .
Simplifying we get
\[\begin{align}
& {{x}^{2}}-3x+2+1-x=x-3 \\
& \Rightarrow {{x}^{2}}-5x+6=0 \\
& \Rightarrow {{x}^{2}}-2x-3x+6=0 \\
& \Rightarrow x\left( x-2 \right)-3\left( x-2 \right)=0 \\
& \Rightarrow \left( x-2 \right)\left( x-3 \right)=0 \\
& \Rightarrow x=2,3 \\
\end{align}\]
The conditions $ x\in \left( -\infty ,1 \right) $ and \[x=2,3\] can’t happen together. We don’t have any solution in the interval $ x\in \left( -\infty ,1 \right) $ .
Therefore, for $ x\in \left[ 1,2 \right) $ , the values are
\[\begin{align}
& \left| {{x}^{2}}-3x+2 \right|=-\left( {{x}^{2}}-3x+2 \right)=-{{x}^{2}}+3x-2 \\
& \left| x-1 \right|=x-1 \\
\end{align}\].
The equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ becomes
\[-{{x}^{2}}+3x-2+x-1=x-3\].
Simplifying we get
\[\begin{align}
& -{{x}^{2}}+3x-2+x-1=x-3 \\
& \Rightarrow {{x}^{2}}-3x=0 \\
& \Rightarrow x\left( x-3 \right)=0 \\
& \Rightarrow x=0,3 \\
\end{align}\]
The conditions $ x\in \left[ 1,2 \right) $ and \[x=0,3\] can happen together. We have solutions in the interval $ x\in \left[ 1,2 \right) $ .
Therefore, for $ x\in \left[ 2,\infty \right) $ , the values are
\[\begin{align}
& \left| {{x}^{2}}-3x+2 \right|={{x}^{2}}-3x+2 \\
& \left| x-1 \right|=x-1 \\
\end{align}\].
The equation $ \left| {{x}^{2}}-3x+2 \right|+\left| x-1 \right|=x-3 $ becomes
\[{{x}^{2}}-3x+2+x-1=x-3\].
Simplifying we get
\[\begin{align}
& {{x}^{2}}-3x+2+x-1=x-3 \\
& \Rightarrow {{x}^{2}}-3x+4=0 \\
& \Rightarrow x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left( -3 \right)}^{2}}-4\times 4\times 1}}{2\times 1}=\dfrac{3\pm i\sqrt{7}}{2} \\
\end{align}\]
There is no real solution in $ x\in \left[ 2,\infty \right) $ .
Therefore, the solution is $ x\in \varnothing $ . The correct option is A
So, the correct answer is “Option A”.
Note: In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $ \left| x \right| $ . We can say $ \left| x \right|\ge 0 $ .
We can express the function $ f\left( x \right)=\left| x \right| $ as $ f\left( x \right)=\left\{ \begin{align}
& x\left( x\ge 0 \right) \\
& -x\left( x<0 \right) \\
\end{align} \right. $ .
We can write $ f\left( x \right)=\left| x \right|=\pm x $ depending on the value of the number x.
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
