
If we have the expressions, $\csc \theta -\sin \theta ={{a}^{3}},\sec \theta -\cos \theta ={{b}^{3}}$, then prove that, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$.
Answer
577.8k+ views
Hint: We will use the trigonometric relations, $\csc \theta =\dfrac{1}{\sin \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ to simplify the given expression. We will then use the relations, $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ and $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $. Finally we will substitute the obtained values $a$ and $b$ in the expression that we have to prove, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$ to get 1 as the final result.
Complete step-by-step answer:
It is given in the question that $\csc \theta -\sin \theta ={{a}^{3}},\sec \theta -\cos \theta ={{b}^{3}}$, and we have to prove that, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$.
Let us consider the expression, $\csc \theta -\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( i \right)$
We know that $\csc \theta =\dfrac{1}{\sin \theta }$, so by substituting the value of $\csc \theta $ in equation (i), we get,
$\dfrac{1}{\sin \theta }-\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( ii \right)$
By taking the LCM in equation (ii), we will get,
$\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }={{a}^{3}}\ldots \ldots \ldots \left( iii \right)$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $, so by substituting it equation (iii), we get,
$\begin{align}
& \dfrac{{{\cos }^{2}}\theta }{\sin \theta }={{a}^{3}} \\
& \Rightarrow a={{\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Similarly, we will now consider the other expression, $\sec \theta -\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( iv \right)$
We know that $\sec \theta =\dfrac{1}{\cos \theta }$, so by substituting the value of $\sec \theta $ in equation (iv), we get,
$\dfrac{1}{\cos \theta }-\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( v \right)$
By taking the LCM in equation (v), we will get,
$\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta }={{b}^{3}}\ldots \ldots \ldots \left( vi \right)$
We know that $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $, so by substituting it equation (vi),
we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}\theta }{\cos \theta }={{b}^{3}} \\
& \Rightarrow b={{\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Now, we have, $a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta }$ and $b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta }$. We have the left hand side or the LHS of the expression to be proved as, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$. By substituting the values of $a$ and $b$in this expression, we get,
$\begin{align}
& {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}}\left\{ {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}+{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}} \right\} \\
& =\dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }\times \dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta }\times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta +{{\sin }^{\dfrac{4}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{6}{3}}}\theta +{{\sin }^{\dfrac{6}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
\end{align}$
We know that, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, so by substituting that in the above expression, we get,
${{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{1}{{{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta } \right\}$
By cancelling the similar terms, we get, 1, which is the right hand side or the RHS of the given expression. Therefore, LHS = RHS.
Hence, we have proved the expression given in the question.
Note: This is a very basic trigonometric function, but the students usually make the mistakes while doing the operations of multiplication and division of powers in exponents. Hence it is advisable to solve this question step by step and not in one go. In questions, where you have to prove, always pay attention to both sides of the expression, that is the LHS and the RHS to get a better idea of the steps to prove them equal.
Complete step-by-step answer:
It is given in the question that $\csc \theta -\sin \theta ={{a}^{3}},\sec \theta -\cos \theta ={{b}^{3}}$, and we have to prove that, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)=1$.
Let us consider the expression, $\csc \theta -\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( i \right)$
We know that $\csc \theta =\dfrac{1}{\sin \theta }$, so by substituting the value of $\csc \theta $ in equation (i), we get,
$\dfrac{1}{\sin \theta }-\sin \theta ={{a}^{3}}\ldots \ldots \ldots \left( ii \right)$
By taking the LCM in equation (ii), we will get,
$\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }={{a}^{3}}\ldots \ldots \ldots \left( iii \right)$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $, so by substituting it equation (iii), we get,
$\begin{align}
& \dfrac{{{\cos }^{2}}\theta }{\sin \theta }={{a}^{3}} \\
& \Rightarrow a={{\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Similarly, we will now consider the other expression, $\sec \theta -\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( iv \right)$
We know that $\sec \theta =\dfrac{1}{\cos \theta }$, so by substituting the value of $\sec \theta $ in equation (iv), we get,
$\dfrac{1}{\cos \theta }-\cos \theta ={{b}^{3}}\ldots \ldots \ldots \left( v \right)$
By taking the LCM in equation (v), we will get,
$\dfrac{1-{{\cos }^{2}}\theta }{\cos \theta }={{b}^{3}}\ldots \ldots \ldots \left( vi \right)$
We know that $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $, so by substituting it equation (vi),
we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}\theta }{\cos \theta }={{b}^{3}} \\
& \Rightarrow b={{\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \\
\end{align}$
Now, we have, $a=\dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta }$ and $b=\dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta }$. We have the left hand side or the LHS of the expression to be proved as, ${{a}^{2}}{{b}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)$. By substituting the values of $a$ and $b$in this expression, we get,
$\begin{align}
& {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}}\left\{ {{\left( \dfrac{{{\cos }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{1}{3}}}\theta } \right)}^{2}}+{{\left( \dfrac{{{\sin }^{\dfrac{2}{3}}}\theta }{{{\cos }^{\dfrac{1}{3}}}\theta } \right)}^{2}} \right\} \\
& =\dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }\times \dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta }\times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta }+\dfrac{{{\sin }^{\dfrac{4}{3}}}\theta }{{{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{4}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta +{{\sin }^{\dfrac{4}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{\dfrac{6}{3}}}\theta +{{\sin }^{\dfrac{6}{3}}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
& ={{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{\dfrac{2}{3}}}\theta \times {{\cos }^{\dfrac{2}{3}}}\theta } \right\} \\
\end{align}$
We know that, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, so by substituting that in the above expression, we get,
${{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta \times \left\{ \dfrac{1}{{{\cos }^{\dfrac{2}{3}}}\theta \times {{\sin }^{\dfrac{2}{3}}}\theta } \right\}$
By cancelling the similar terms, we get, 1, which is the right hand side or the RHS of the given expression. Therefore, LHS = RHS.
Hence, we have proved the expression given in the question.
Note: This is a very basic trigonometric function, but the students usually make the mistakes while doing the operations of multiplication and division of powers in exponents. Hence it is advisable to solve this question step by step and not in one go. In questions, where you have to prove, always pay attention to both sides of the expression, that is the LHS and the RHS to get a better idea of the steps to prove them equal.
Recently Updated Pages
How do you convert r6sec theta into Cartesian form class 10 maths CBSE

How do you solve dfrac5y3dfracy+72y6+1 and find any class 10 maths CBSE

If sin A+B1 and cos AB1 0circ le left A+B rightle 90circ class 10 maths CBSE

On the number line 10 is to the of zero class 10 maths CBSE

How do you solve 5xge 30 class 10 maths CBSE

In the following sentence supply a verb in agreement class 10 english CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
